Suppression of the zero-order diffracted beam
from a pixelated spatial light modulator
by phase compression

Jinyang Liang,"* Sih-Ying Wu,' Fredrik K. Fatemi,? and Michael F. Becker'

'Electrical and Computer Engineering Department, University of Texas at Austin, Austin, Texas 78712, USA

?Qptical Sciences Division, Naval Research Laboratory, Washington, DC 20375, USA

*Corresponding author: jinyang.liang @ mail.utexas.edu

Received 6 January 2012; revised 12 March 2012; accepted 12 March 2012;
posted 14 March 2012 (Doc. ID 161094); published 24 May 2012

Phase compression is used to suppress the on-axis zero-order diffracted (ZOD) beam from a pixelated
phase-only spatial light modulator (SLM) by a simple modification to the computer generated hologram
(CGH) loaded onto the SLM. After CGH design, the phase of each SLM element is identically compressed
by multiplying by a constant scale factor and rotated on the complex unit-circle to produce a cancellation
beam that destructively interferes with the ZOD beam. Experiments achieved a factor of 3 reduction of
the ZOD beam using two different liquid-crystal SLMs. Numerical simulation analyzed the reconstructed
image quality and diffraction efficiency versus degree of phase compression and showed that phase com-
pression resulted in little image degradation or power loss. © 2012 Optical Society of America

OCIS codes:  090.1760, 230.6120, 090.2870.

1. Introduction

Phase-only computer-generated holograms (CGHs),
first generated by Lohmann and Paris [1], have been
studied intensively to optimize their performance in
diffraction efficiency, spatial error, and ease of imple-
mentation as a holographic optical element (HOE).
For the case of Fourier transform holograms, a target
image can be reconstructed at the Fourier plane by
using a phase-only optical element. The availability
of phase-only spatial light modulators has led to re-
configurable versions of these holographic elements.
Various approaches and algorithms have been used
to generate phase-only CGHs, including iterative
Fourier transforms [2], genetic algorithms [3], and si-
mulated annealing [4]. These developments have let
to wide use of phase-only HOESs in various areas, in-
cluding optical tweezers and beam shaping [5], opti-
cal fiber coupling [6], and optical correlators [7]. In
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many applications, the phase-only HOE is imple-
mented on a pixelated, phase-only spatial light mod-
ulator (SLM) for dynamic hologram generation [8].
The incident light on the SLM is modulated by
the phase of the pixels and forms the reconstructed
image.

However, most of the undiffracted light produces a
zero-order diffracted (ZOD) beam on the optical axis
at the Fourier plane. The ZOD beam primarily (but
not exclusively) comes from the inactive parts of the
SLM (e.g., dead space, window reflection, etc.). The
Z0OD beam poses a difficulty for many applications
because of its bright, highly localized nature. Even
if the reconstructed image is shifted from the ZOD,
this strong source still needs to be prevented from
scattering light into the data region. For these rea-
sons, suppression of the ZOD beam is highly desir-
able when using phase-only SLMs as HOEs.

The usual way to avoid the ZOD beam is to make
an in-plane and/or axial translation of the recon-
structed image from the ZOD beam. This has been
achieved by superimposing both a linear phase



and a divergent spherical phase [9], or an additional
phase checkerboard function [10] to the calculated
CGH. As a result, the power of the ZOD beam and
target image was redistributed to separate spatial
frequencies. However, translation limits the avail-
able SLM bandwidth for image encoding. Thus, since
the target beam-profile is usually reconstructed at
the Fourier plane through a lens, transverse transla-
tion can increase the aberration of the resulting im-
age if additional correction terms are not included in
the hologram. In addition, undesired power from
higher orders of the displayed hologram could be
shifted into the region of interest, unless the encoded
pattern is oversampled.

A good example of holographic image projection
with a suppressed ZOD beam is described by Palima
and Daria [11]. They generated an HOE using a
variation of the Gerchberg—Saxton (GS) iterative
Fourier transform (IFT) algorithm [12] with both
amplitude and phase constraints. Their phase-only
CGH produced the target beam-profile and a ZOD
cancellation beam on the optical axis. The cancella-
tion beam had equal amplitude to the ZOD beam, but
with z-shifted phase. As a result, the corrective beam
in the reconstructed image destructively interfered
with the ZOD beam caused by the less than unity fill
factor of the SLM. Later work by Milewski et al. [13]
used an iterative pixel-by-pixel optimization process
for highly precise far-field pattern generation. The
optimally designed phase-only HOE considered var-
ious characteristic SLM artifacts (e.g., dead space
and inter-pixel cross talk) and could be used to cancel
a strong unwanted ZOD beam. However, the phase-
only CGH suffers from an inherent approximation to
fully complex modulation and is therefore limited in
achievable precision. Furthermore, adding both am-
plitude and phase constraints to the numerical algo-
rithm increases the computational complexity and
reduces the convergence speed, generally resulting
in increased rms error. Finally, these methods re-
quire knowledge of the ZOD magnitude before an
iterative or minimization algorithm is used to calcu-
late the CGH. As a result, experimental complexity is
increased by an additional system for accurate ZOD
measurement.

Our objective is to create an easy and quick method
to suppress the ZOD beam from holograms produced
by phase-only SLMs. Our primary goal is to effi-
ciently suppress the ZOD beam regardless of the pre-
cision of the algorithm chosen to create the HOE. In
order to overcome problems encountered in previous
approaches, the proposed method needs to have a low
computational complexity for ZOD suppression and
be easily implemented in a phase-only SLM. Most
importantly, the ZOD suppression process should
not cause significant degradation to the recon-
structed image.

In Section 2, we describe the theory of the phase
compression technique and show the impact of dif-
ferent parameters affecting the phase distribution
in phase-only HOEs that are designed to suppress

the ZOD beam. Section 3 presents the experimental
results of ZOD beam suppression using two different
phase-only liquid-crystal SLMs. The hologram qual-
ity and diffraction efficiency for different phase com-
pression factors are examined using numerical
simulation in Section 4, and a summary concludes
this paper in Section 5.

2. Theoretical Analysis of the Phase Compression
Technique

The problem is posed in the following way. Figure 1
shows the optical layout of the phase compression ex-
periment for a Fourier transform CGH. The colli-
mated input laser beam of wavelength A is incident
on a phase-only pixelated SLM. The active area has
a rectangular aperture b(&, 7). Each square pixel has
pitch d and length a. The active area of the pixels
divided by the total SLM area is defined as the area
fill factor, ff = (a/d)?. The 2D discrete CGH,
expljps (¢, n)lcomb(s,7) is encoded onto the SLM,
where pj(&,7) is the phase angle calculated for the
CGH. To account for curvature of the SLM chip,
psim (&, 1) is the smooth and continuous phase angle
introduced by the SLM surface shape. It applies to
every part of the SLM, and in conjunction with the
rectangular amplitude function b(¢, ;) gives the com-
plex reflectance across the SLM aperture when it is
inactive.

The target image is reconstructed at the back focal
plane of a Fourier lens with focal length f. The field
at the Fourier transform plane consists of replicas of
the reconstructed hologram centered at the SLM pix-
el diffraction orders. The strong, centermost replica
is of interest to our study and occupies the range
+1f/2d in the x-y coordinate plane. This region con-
tains the reconstructed image, the ZOD beam at the
orign, and the conjugate reconstructed image, if it
exists.

In the far field, the ZOD beam represents the dc
term of the Fourier transform of the SLM’s phase
pattern plus any specular reflected light from the
SLM or its window. The shape of the ZOD from
the SLM pixel area is determined by the aperture
function, b(¢,7) , and any distribution of phase or
amplitude from non-modulated region(s). Therefore,
the optical field of the ZOD beam at the centermost
region can be written as

s
s B

SLM Plane

Image Plane

Fig. 1. Optical layout of the phase compression experiment. Pixe-
lated SLM is in the £— coordinate system, and the holographic
image is reconstructed at the x-y coordinate plane.
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Uzod(fx’fy) = {[fqzod exp(j(pzod)]é(fx’fy)} ® M(fawfy)v
(1)

where Azop and ¢yop are the amplitude and phase
of the ZOD beam in the far field, respectively, and
® is the convolution operator. Spatial frequency at
the image reconstruction plane is represented by
fr= %, y = j’—f In the far field, the ZOD delta function
is convolved with the frequency domain representa-
tion of both the aperture function and SLM phase
curvature so that M(f,f,) can be written as
M(fy.fy) = F{b(&.n) explipsm(é. )]}, where F{} de-
notes the 2D Fourier transform. Therefore, if we
can produce additional undiffracted light in the
hologram reconstruction with equal amplitude,
n-shifted phase, and the same functional form as
the undiffracted ZOD light given in Eq. (1), then
the ZOD beam can be suppressed by destructive
interference.

We propose to apply the phase compression tech-
nique following the CGH design in order to suppress
the ZOD beam. Whereas other techniques apply ZOD
suppression as part of the CGH design, our technique
applies it afterwards and hence does not require re-
computation of the CGH or interfere with the opera-
tion of the CGH algorithm. The phase angle of each
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pixel in the derived CGH is modified by the following
equation:

pe(&.n) = lepp(E.m) + (7 + Proa)] £ 22m,  (2)

where ¢ is the phase compression factor, 0 <c¢ <1,
and p.(&,n) is the pixel phase angle after compres-
sion. The integer m confines the compressed phase
angle to within a 27 range (modulo 2x).

The process of phase compression is illustrated
using the phase histogram and complex unit-circle
diagrams in Fig. 2. First, the designed CGH
pr(é,n) has the uniform phase angle distribution
shown in Fig. 2(a). On the complex plane, this distri-
bution can be represented by a full unit-circle. Phase
compression changes the phase distribution in the
histogram to p.(¢,n) € [-cren], as shown in
Fig. 2(b). This corresponds to an open arc on the
unit-circle. As a result, the summation of all CGH
pixels forms a sum vector pointing to zero phase
angle (i.e., on the real axis), as shown in Fig. 2(c).
Second, a uniform phase angle, 8 = 7 + ¢,.q, is added
into the entire CGH to create the z-shifted phase
with respect to the ZOD beam. This is shown as
the rotation angle fin Fig. 2(d). The resulting rotated
sum vector is used as the ZOD cancellation beam.
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(Color online) Representation of the phase compression technique: (a) uniformly distributed phase angle histogram of the CGH

after the IFT algorithm; (b) phase compression redistributes the phase angle of the CGH pixels, P}, (&, ) x ¢, as shown; (c) phase distribu-
tion, same as (b), on the complex unit-circle after phase compression; complex vectors sum up to create the ZOD cancellation vector at zero
phase; (d) rotation angle, § = = + ¢,,q4, determines the phase of the resulting corrective vector.
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The phase compression factor ¢ determines its ampli-
tude, and the rotation angle 0, its phase.

The following theoretical analysis shows ZOD sup-
pression using phase compression. At the SLM plane
(continuous £— coordinate system), the transmission
function from the active pixels, u,(¢,7), is given by
the discrete pixel phase multiplied by the SLM aper-
ture and surface phase function:

u(&, n) = uq (&, b nexp pstm(&.n)].  3)

where the discrete pixel phase is given by

==
a a

o(En) = {exp[iph@, n)]comb(g,g)} ® rect(‘f ”),
and where

’

1, (-a/2<én<al/2)
— 10, otherwise

comb(g, )z Z Z 8(E —md,n - nd).

m=—oco p=—

At the lens focal plane, the image reconstruction
field from the CGH pixels can be described by the
Fourier transform of Eq. (3). The image reconstruc-
tion field is therefore given by

U(fx’fy) = Ua(fx»fy) ® M(fwfy)v 4)

where

Uo(fof,) =ff[Ph<fx,fy>
+ Z Py, (fx —E,fy —E)}sinc(afx,afy)

m,nz0

is the Fourier transforms of u,(£,7). The pixel
shape factor takes the form of a sinc function,
which is defined by sinc(afy.af,) = [sin(zaf,)/
naf ] x [sin(zaf,)/naf ). The Fourier transform of the
comb function is F{comb(§.%)} = J;comb(df,.df,)
and satisfies conservation of energy. The recon-
structed target image amplitude is the Fourier
transform of the phase-only CGH, Py(f..f,) =
F{exp(jps(£,n))}. In the derivation, we dropped the
quadratic phase factor that depends on the SLM-lens
separation [14], because it is independent of the CGH
design and has the same impact on the ZOD beam
and on U,(f,.f,).

The total reconstructed field is the sum of the ho-
logram and ZOD contributions. The total amplitude
is written by combining the Eq. (5) with Eq. (1) to
obtain

UO (fx vfy) = {Azodexp(j(ﬁzod)é(fx vfy)

HH{Putety+ Y Pa(Figfyy ) [sinctariar )

m,n#0

M (fx.fy)- (6)

The ZOD beam is the first term with the delta func-
tion, and the convolution with M(f,.f,) defines its
shape. Thus, our primary goal becomes how to
manipulate the CGH to produce a ZOD cancellation
beam with correct amplitude, phase, and functional
form to fully suppress the ZOD beam, given
by Mzod exp(j(bzod)‘s(fxvfy)] &® M(fx’ fy)

Based on Huygens—Fresnel diffraction, all pixels
in the SLM plane contribute to the interference on
the optical axis. As a result, the amplitude and phase
angle of the ZOD cancellation beam is determined by
the summation of all pixels in the CGH. In essence,
the purpose of phase compression is to create a sum
vector pointing in the opposite direction from ¢,.q
with identical magnitude.

After phase compression, the modified CGH pro-
duces the target image with the ZOD cancellation
beam, and Eq. (6) becomes

UOC(fxvfy) = {(Azod _Ac) exp(j¢zod)§(fx’fy)

Pt X Pa(fu= =) sinctaficat |

m,n=0

QM(fx.fy)- (7

We assume that the dc component (the ZOD cancel-
lation beam) at the origin arising from the phase
compressed hologram pixels (-A,) comes primarily
from the dc component of the m =n =0 term of
the sum and that the higher-order terms make neg-
ligible contribution at the origin. Thus we can sepa-
rate the dc component from Py(f,.f,), and the
remainder becomes P;(f.f,). The first term in
Eq. (7) represents the suppressed ZOD beam with
amplitude (A,,q - A.). By examing Eq. (7), we see
that the ZOD cancellation beam has the same func-
tional form as the ZOD beam , but with a z-shifted
phase. Thus, these two beams always have the same
functional form and always destructively interfere.
In addition, we see that the ZOD is fully canceled
when 4,4 -A,. =0.

Phase compression is a subset of a more general
phase scaling effect (i.e., includes both phase com-
pression and phase expansion) that has been studied
mainly in diffractive optics. For instance, in the de-
sign and fabrication of diffractive optical elements,
the phase scaling effect is often known as the phase
depth error due to imprecise fabrication depth con-
trol [15,16]. In addition, it has been studied in multi-
wavelength holographic image projection where the
hologram designed for one wavelength appears as a
scaled phase for the other wavelengths [17]. Phase
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scaling error produces extra noise in the recon-
structed image and reduces the diffraction efficiency
by introducing an on-axis component (i.e., extra ZOD
beam) [18]. The phase scaling effect is detrimental in
these examples. However, with the phase-only SLM,
we introduced a n-phase shift after phase scaling. As
a result, the introduced ZOD beam that arises due to
phase scaling destructively interferes with the un-
wanted ZOD beam from other sources.

We derived the amplitude of the ZOD cancellation
beam A, from the phase compression factor and SLM
area fill factor. The aim is to sum (integrate) the on-
axis contribution from all the pixels to the dc compo-
nent at the hologram reconstruction plane. From the
phase histogram of the hologram, the phase is ap-
proximately uniformly distributed in the range of
[-cx, +cx] after compression. Therefore, the distribu-
tion density function (pixels/unit-phase-angle) is
given by p(0) = 55 where N is the total number of
SLM pixels. Before compression, the density function
was N /2x.

The phase of any SLM pixel can be represented by
exp(jo) = cos 0 + jsin 6. The phase distribution histo-
gram (Fig. 2(c)) shows that the phase distribution is
symmetric about the real axis, meaning that the ima-
ginary part can always be canceled by its complex
conjugate. As a result, the integral of the imaginary
part of the phase distribution is zero. However, the
phase distribution is not symmetric with respect to
the imaginary axis, meaning that the real parts of
all the phases cannot totally cancel. This, in fact,
is the origin of the ZOD cancellation beam. Assume
the input laser source has a uniform amplitude
A; = 1, the sum of the real part (integral in continu-
ous variables) of all the pixel’s contributions to the dc
spot becomes

szn(;rc)

A, Alff/ p(0)cos 0d9 = Nff (8)

In order to fully cancel the ZOD beam, we must have
A,.q = A.. Therefore, we get

=‘;\‘;]§; 0<c<1). 9)

Equation (9) can be used to estimate the degree of
phase compression required to compensate a given
SLM fill factor. The amplitude of the ZOD cancella-
tion beam can be manipulated by controlling the
phase compression factor. Thus, we have satified
all three conditions for ZOD beam suppression (cor-
rect amplitude, z-shifted phase, and identical func-
tional form). It is expected that the ZOD beam
from the SLM can be strongly suppressed.

Phase compression redistributes power from the
on-axis ZOD beam to the higher diffraction orders.
The high-order replicas produced by the pixelated
SLM are also found for certain sources of ZOD
beams. For instance, the ZOD contributions from
the dead space or from the smooth transition region

sinc(c)
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between SLM pixels have high-order replicas. Based
on the theoretical derivation, the ZOD beam in these
high orders has a z-phase difference from the ZOD
beam on the optical axis. On the other hand, phase
compression does not change the phase of the recon-
structed images in higher diffraction orders. As a re-
sult, when ZOD cancellation destructively interferes
with the ZOD beam on the optical axis, it construc-
tively interferes with the ZOD beams in the higher
diffraction orders. Thus, the energy of the ZOD beam
on the optical axis is redistributed to the higher dif-
fraction orders.

Compared to previously reported methods [11,13],
our method does not have any additional phase and
amplitude constraints in the CGH design process.
Suppression of the ZOD beam starts from the pre-
computed hologram and is accomplished by adjust-
ing two parameters (¢ and 6). Finding a minimum
for the ZOD by experimental adjustment is easy
since the functional form of the suppressed ZOD
power versus ¢ and 6 derives from interference, so
the variables are separable, and there is a single-
value minimum (modulo 27). We can quickly find this
minimum though global adjustment and do not need
to redesign the hologram for each case. Thus, any al-
gorithm can be used to achieve an optimized CGH
since phase compression is applied after the CGH
is designed. This significantly reduces the computa-
tional complexity for the ZOD suppression process.

A significant consideration is that the phase angles
in the CGH have been changed from p;, (£, %) to p. (&, 1)
by the phase compression process. We need to de-
monstrate that this change does not significantly
degrade hologram reconstruction and to quantify
the introduced error. We will next show experimental
results for ZOD suppression by phase compression
in Section 3 and then discuss the reconstructed holo-
gram quality after phase compression using the si-
mulations presented in Section 4.

3. Experimental Results

A. SLM with 100% Fill Factor

Tests with two different SLMs were conducted to
demonstrate the phase compression technique.
First, we used a reflective nematic liquid-crystal
SLM (Boulder Nonlinear Systems P512-0785)
with 512 x 512 resolution and 15 um pixel size
(7.68 x 7.68 mm? active area). The experiment used
a 780 nm laser source that matched the SLM design
wavelength. The active area is covered by a flat
dielectric mirror to achieve 100% fill factor for this
device. However, this process cannot completely
eliminate the optical grating effect caused by the pix-
el structure. Because of the dielectric mirror, the
abrupt change in phase modulation between active
pixels (i.e., dead space) is reduced to a smooth transi-
tion region from one pixel to the next [19]. Normally,
the phasor sum of the contributions from of all these
transition regions will not be zero, and thus they will
make a small contribution to an on-axis Z0OD beam



[20]. The reason for this derives from the CGH design
that will randomly distribute the pixel phase angles
from -z to +x. Most iterative algorithms will do this
naturally, and the result will be that the Fourier
transform hologram has no dc spot on axis. This is
not necessarily true for the transition regions. If
the phase is encoded modulo 27 on the SLM, each
transition must span two phase values and have a
phasor sum angle near the mean of the two adjacent
pixel phase angles. This results in a histogram of the
phases from all the transition regions over the SLM
that is lower at the ends (at -z and +7) than at the
center. The sum of all the phasor contributions at an
on-axis point from the entire hologram cannot now
sum to zero. However, additional CGH design mea-
sures can still be taken to eliminate this source for
a ZOD beam. Thus, we conclude that this SLM will
produce a ZOD and that the methods and analysis for
suppressing this ZOD by phase compression can be
legitimately employed.

The experimental setup is shown in Fig. 3. A col-
limated Gaussian beam with 1/e? radius w, =
10.0 mm was passed through a circular aperture
with diameter 7.0 mm to provide roughly uniform in-
tensity to the SLM. The beam polarization was set to
vertical (active axis of the SLM) by a Glan Thompson
polarizer with 105 extinction ratio. The SLM was
tilted by 100 mrad to separate the diffracted and
Z0OD beams from the incoming beam. The reflected
beams were collected by a 75 mm achromatic lens,
and the images were captured by a 1280 x 960
CCD camera (Sony DMK 41BU02). The CCD was
at the back focal plane of the lens to capture a far-
field diffraction patter scaled to fit the camera sensor.
The SLM was not at the lens front focal plane and
thus introduced quadratic phase terms multiplying
the Fourier transform. However, the image is still
the correct magnitude squared of the Fourier trans-
form and correctly represents the reconstructed
holographic image.

B. Experimental Method and Results

In the experiment, both the ZOD beam and high-
order replica are observed for this SLM. We applied
HOESs corresponding to the desired target images to
the SLM. These phase profiles were determined by

input beam
s-polarized

Fig. 3. Experimental setup for phase compression tests with lens
focused to place the focal plane at the CCD surface.

the GS algorithm [12]. To show how phase compres-
sion can be used easily and quickly with adaptive
adjustment methods, the optimum values of ¢ and
0 were found as follows. First, the phase compression
factor ¢ was set to achieve the best ZOD suppression.
Then the constant phase 0 that is added to each pixel
was adjusted to minimize the ZOD. Since ¢ and 6
are global parameters over the SLM face, they may
be quickly adjusted without having to recompute
the HOE.

In the experiment, we created a series of HOE
phase profiles using Eq. (2), with ¢ = 0.60 to 1.00.
The power in the zeroth diffraction order domain
(x, y within +1f /2d) for the ZOD spot and the power
in the reconstructed image were each integrated. The
normalized ZOD power is plotted in Fig. 4 as a
function of compression factor and rotation angle
0. Figure 4(a) shows the zero-order power as a func-
tion of ¢, and a minimum at ¢ = 0.80 that is about 3
times lower than for ¢ = 1.00. For this plot, the rota-
tion angle 0 was fixed at 180°. The ZOD beam power
as a function of 6 is shown in Fig. 4(b), with c adjusted
as shown above for a minimum. For this SLM, there
was no further improvement when varying these
parameters.

In addition, we found that the reconstructed image
of the letter “A” did not observably change. In order to
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BNS P512-0785. Normalized diffracted power of the ZOD beam
versus (a) phase compression factor with experimental images
of the ZOD beam evolution (inset above) and reconstructed image
(inset middle), and (b) rotation angle with ¢ = 0.8. The data is
normalized by the ZOD intensity for ¢ = 1.0 and 6 = 180°.
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quantify the quality of holographic image reconstruc-
tion, we calculated the signal-to-noise ratio (SNR) of
the reconstructed image with respect to the original
target image intensity in the image area. For the re-
constructed images before and after phase compres-
sion, the total image power (sum of pixel magnitude
squared in the image area) was equalized to that of
the target image. The SNR was calculated by

Z (|At(fxvfy)|2)2 )
Z (le(fx7fy)|2 - |At(fxvfy)|2)2 ’
(10)

SNRdB =10 logm(

where A, and A, are the amplitude of the recon-
structed image and of the target image, respectively,
with equalized image power.

The resulting SNR for the region of the letter “A”
was 1.75 dB, both before and after phase compres-
sion. The low SNR was mainly due to the speckle ef-
fect in the hologram reconstruction. This result also
illustrated that experimental noise sources in the
image, such as coherent speckle noise, dominated
the noise level from the design algorithm and phase
compression.

C. Analysis

Although the qualitative features of the technique
were clearly demonstrated by this SLM, the ZOD
could not be completely eliminated due to the various
other contributions to the ZOD by a typical SLM. For
instance, reflections from the front and back surfaces
of the protective cover glass would result in one or
two spots in the focal plane, depending on its tilt
and wedge angle. Furthermore, differences in shape
between the SLM surface and the cover glass sur-
faces could shape these spots differently.

Although ¢ compresses the phase applied to the
SLM, nonlinearities and calibration errors in the
SLM lookup table (LUT) can produce quantitative
differences from the simulation. The LUT can also
vary slightly from pixel to pixel. The integrated
power diffracted into the reconstructed image is
shown in Fig 5. Note that the diffracted power chan-
ged little between ¢ = 0.8 and ¢ = 1.0, whereas
the simulation showed that the power should have
changed by 8%. The power also peaks slightly for
6 = 180°, whereas ideally it should be constant with
respect to the rotation angle. These results also sug-
gest calibration errors in the SLM. In this range of c,
however, the ZOD power was reduced by more than a
factor of 3. We observed that the power in the ZOD
was much lower than the total power in the recon-
structed image, so a variation of 3 times in the
Z0OD resulted in a smaller fractional change to the
power of the reconstructed image.

The variations from ideal behavior noted above
come from the non-ideal modulation of the SLM
and the lack of a LUT for each pixel. The diffraction
efficiency of a nematic SLMs is typically dependent
on the spatial frequency of the SLM phase profile.
This is because the pixels are not completely isolated
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Fig. 5. (Color online) Diffraction power of the reconstructed im-
age versus (a) phase compression factor ¢ and (b) phase rotation
angle 0.

from one another, and voltages controlling the phase
on one pixel perturbed the adjacent pixels. This non-
zero transition distance between pixels has two ef-
fects when large pixel-to-pixel phase changes are de-
sired. First, the effective fill factor is reduced because
light in the transition region for large phase changes
is diffracted outside the imaging system. Second, the
depth of phase modulation is reduced (i.e., the mod-
ulation transfer function of the SLM decreases at
higher spatial frequencies). For this latter effect,
phase changes in regions of high spatial frequency
are already compressed and would thus require reca-
libration. So in real devices with finite transition re-
gions, areas of high spatial frequency or large phase
changes require different compression factors to be
applied. We measured the diffraction efficiency of
this SLM as a function of spatial frequency by apply-
ing a blazed grating function ¢ = 2z(x/N)D, where
N = 512 is the pixel count, 1 <x <N, and D is the
grating frequency (e.g., for D = 64 cycles across the
SLM, the period is N/D = 8 pixel). To extract the ef-
fect of spatial frequency from other parameters (e.g.,
the 70% reflectivity of the SLM), we define diffraction
efficiency here as the power into the first order di-
vided by the total reflected power. Our measured dif-
fraction efficiencies into first order were 0.96, 0.92,
0.75, and 0.34 for D = 32, 64, 128, and 256 (the
Nyquist frequency), respectively. The theoretical



diffraction efficiencies at these respective spatial fre-
quencies are 0.99, 0.95, 0.82, and 0.41. Note that at
the Nyquist frequency, we achieve only 83% of the
theoretical value, but at the lowest spatial frequen-
cies, we achieve 97% of the theoretical value. We at-
tribute this to the increased effect of finite transition
regions that diffract light away from the target order.
So our SLM showed some degree of reduced modula-
tion transfer function at the highest spatial frequen-
cies. Thus, the deviation from positive slope in
Fig. 5(a) between ¢ = 0.8 and 1.0 and the lack of flat-
ness for diffraction efficiency versus 0 in Fig. 5(b) are
likely due to these uncompensated deviations from
ideal behavior in the SLM.

D. SLM with Limited Fill Factor

In a second experiment, a reflective liquid-crystal
SLM (Boulder Nonlinear Systems P512-1064) with
512 x 512 resolution and 15 um pixel size
(7.68 x 7.68 mm? active area) was tested by a similar
experimental setup with an exact Fourier plane dxe-
tection (SLM and camera are placed at the front and
back focal plane of the lens). This device had a fill
factor of 83.5% [21]. A He—Ne laser with 633 nm
wavelength was used in this experiment. The ex-
pected phase compression factor for a SLM with dead
space can be derived from the fill factor by using
Eq. (8), as ¢ = 0.828 with A,y = 1 -f7.

The possible phase modulation depth of the BNS
SLM (P512-1064) was much larger than 2z at
633 nm than at its design wavelength of 1064 nm.
As a result, using the 633 nm wavelength avoided
the possibility of shallow (<2z) modulation depth
and guaranteed a full 27 modulation range, which
is important for optimum performance of the phase
compression process. LUT measurement showed
that the modulation depth of this device ranged from
0 to 2.7 (x2x) at 633 nm. We extracted a region with
27 modulation depth that utilized the largest num-
ber of digital number steps and left the remaining
digital numbers unused. The hologram designed by
the IFT was mapped to this extracted LUT and
loaded onto the SLM. When the SLM was operated
in this way, no extra power was sent to the ZOD beam
due to phase scaling effects, and the measurement
results are representative of phase modulators with
dead space.

The optimum experimental values of ¢ and 6
were found by using the same method described in
Subsection 3B. First, we scanned the rotation angle
with ¢ = 0.95 and found the optimum angle was
6 = 10°. Second, the angle was fixed while different
phase compression factors were applied and the max-
imum ZOD suppression was found at ¢ = 0.79. No
further improvement was obtained by scanning the
rotation angle again. Experimentally measured
scans of normalized ZOD power versus phase com-
pression factor and rotation angle are shown in Fig. 6.
The experiment produced a minimum ZOD power
that was 3 times lower than for ¢ = 1.0. Because
the antireflection coating on the SLM cover window
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Fig. 6. ZOD suppression measurement using the BNS P512—
1064. Diffracted power of ZOD beam versus (a) phase compression
factor with ¢ = 0.95 and (b) rotation angle with ¢ = 10°. The ex-
tracted region of letter “A” from reconstructed images for
(1) ¢ = 1.0 and (ii) ¢ = 0.79 are inset into (b). The data is normal-
ized by the ZOD intensity for ¢ = 1.0 and 6 = 10°.

did not match the operation wavelength, an addi-
tional ZOD beam from window reflection was ob-
served in this experiment. As a result, the actual
phase compression factor was smaller than the
theoretical value. This experimental result demon-
strates that we can efficiently suppress the ZOD
caused by various sources, but different functional
forms for these beams may cause non-uniform sup-
pression and leave some residual ZOD power.

4. Simulation Results

Because experimental results showed an unobserva-
ble change in the SNR of the reconstructed image
after phase compression, it was difficult to investi-
gate the change of hologram quality from phase
compression exclusively. Therefore, a numerical si-
mulation was conducted to examine the hologram
quality in terms of image fidelity and diffraction ef-
ficiency. First, we investigated the degree of image
degradation induced by phase compression. Four dif-
ferent target images were tested in this simulation,
and their properties are summarized in Table 1.
Each target image was zero-padded in a 512 x 512
pixel field and offset from the center. The SLM area
fill factor was set at 0.9, and the phase introduced by
the dead space was ¢,,q = 0.

We used a two-step process to eliminate the ZOD
beam and to simulate the reconstructed image; its
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Table 1. Summary of the Properties of the Four Test Images

Test Image Size (pixels)* Type Image
Letter “A” 90 x 90 Binary, character -
Dog 182x 182  Grayscale,

image
Square 128 x 128  Binary, solid

area
Dots Array’ 256 x 256  Binary, beam

fan-out

“All target images are padded into a512 x 512 array.
*The dots array is a 4 x 4 array of 1-pixel spots with 50-pixel
spacing (the dots are exaggerated for visibility in the image).

flow chart is shown in Fig. 7. First, the CGH was de-
rived by an IFT algorithm (IFTA). As a phase-retrie-
val algorithm, the IFTA simulated light propagating
and counter-propagating between the HOE (object)
and reconstructed image (target) planes as shown
on the left in Fig. 7, at the bottom and top of the loop,
respectively. The algorithm forces the desired ampli-
tude condition at the object plane and applies ampli-
tude and/or phase constraints at the target image
plane while allowing the phase to evolve. The de-
signed phase-only CGH therefore produced the de-
sired target beam-profile with some residual error
after the IFTA converged. We used both the GS algo-
rithm [12] and the modified adaptive-addictive (AA)
algorithm [22] to compare image degradation of
phase compressed holograms designed by different
algorithms.

The second process step was to apply different
phase compression factors with pgrp(&,17) = 0 for a
perfectly flat SLM surface. The quality of holo-
graphic image reconstruction was determined by
the difference in SNR (Eq. [9]) between the recon-
structed image and the original target image for
the entire diffraction field. The SNR versus phase
compression for the test images using the GS algo-
rithm is plotted in Fig. 8(a). The starting value of
rms error at ¢ = 1.0 was indicative of how well the
GS algorithm performed and was seen to vary for dif-
ferent target images, depending on the area of the
512 x 512 field covered by the image and on the

3302 APPLIED OPTICS / Vol. 51, No. 16 / 1 June 2012

Fig. 7. (Color online) Flowchart of the phase compression techni-
que using the IFT algorithm (IFTA) and the quality comparisons of
the reconstructed images.

specific image content. Since compression redistrib-
uted the phase angles of the HOE pixels, we expected
this technique would introduce some by-products,
such as a conjugate image and background noise.
The generated noise degrades the reconstructed im-
age quality and reduces the SNR. Most relevant for
using phase compression with an HOE using a typi-
cal SLM was the fact that a reasonably good SNR
was maintained for a wide range of ¢. For typical li-
quid-crystal SLMs, the phase compression factor to
fully suppress the ZOD beam falls in the range of ¢ =
0.80 to 0.95 for fill-factor, ff = 81.1% to 95.0%. The
image SNR was decreased by 1.5 to 2.8 dB (for
¢ = 0.80) for different target images, indicating that
the hologram quality would be preserved for these
realistic cases.

The effect of phase compression on hologram re-
construction fidelity can be understood by the follow-
ing argument. Phase compression (without phase
angle rotation) will not change the hologram fringe
spacing but slightly reduce the phase modulation
depth. Phase angle rotation will manifest as a lateral
shift of less than one fringe period that will leave
fringe amplitude and period unchanged. This sug-
gests why phase compression with 0.8 <¢ < 1.0 has
such a minimal effect on the reconstructed image
quality. A linear reduction in modulation depth will
be expected to reduce the diffraction efficiency, but
since the phase fringes are not distorted and a linear
(but compressed) mapping of modulation phase at
each pixel is preserved, little degradation of the ho-
logram is expected.

In addition, we compared holograms designed
by two different IFTAs versus phase compression
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Fig. 8. (Color online) Degradation of signal-to-noise ratio (SNR)

versus phase compression factor for (a) different target images,
and (b) GS and AA algorithms for the binary letter “A” image.

factor, as shown in Fig. 8(b). For the binary letter “A,”
the modified AA algorithm showed better image
quality (SNR = 16.47 dB) than the GS algorithm
(SNR = 14.95 dB) before phase compression (c =
1.0). A larger decrease in SNR was observed for
the modified AA algorithm of 2.6 dB versus 1.5 dB
for the GS algorithm for ¢ = 0.8. As phase compres-
sion was applied and ¢ decreased, the SNR for the
two algorithms converged.

The evolution of diffraction efficiency as a function
of phase compression was studied for all cases, and
typical data for the letter “A” image will be displayed.
The diffracted power was partitioned into three re-
gions for analysis: (1) the ZOD cancellation beam,
(2) the image area, and (3) the black background area
(excluding the corrective beam). The diffraction effi-
ciency for the zero diffraction order domain is given
by n = ff? where the optimum compression factor is
found using Eq. (8). For example, for ff = 0.9, the dif-
fraction efficiency to the zeroth order domain (sum of
all three regions) is 81%. For ¢ changing from 1.0 (no
compression) to 0.9, the normalized power fraction in
the image only decreased by 2.1%, as shown in Fig. 9.
The corresponding change in the power in the dark
background increased 1.2%. The generated ZOD
beam contained less than 1.0% of the total power.
As c decreased further, the majority of the power lost
from the image was received by the ZOD correc-
tive beam.

5. Conclusion

We demonstrated an efficient method to suppress the
zero-order diffracted (ZOD) beam of holographic op-
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Fig. 9. (Color online) Simulated diffracted power versus phase
compression factor.

tical elements implemented using phase-only SLMs.
The solution compressed the phase of the CGH glob-
ally, and thus the amplitude and phase of the correc-
tive beam that canceled the ZOD beam could be
adjusted using only two global parameters. This
technique isolated the iterative, phase-only HOE
pattern-generation process from that of cancellation
beam formation. It reduced the computational com-
plexity and time needed to arrive at an HOE with a
compensated ZOD.

We established the general model of the ZOD beam
in the far field. The theoretical derivation proved
that the ZOD and cancellation beam share the same
functional form. The phase compression factor and
rotation angle determine the amplitude and phase
angle of the cancellation beam. Experimental re-
sults, using two reflective nematic liquid-crystal
SLMs with different area fill factors, demonstrated
a factor of 3 reduction of the ZOD beam power when
using adaptive adjustment of the two compression
parameters, ¢ and 6. Our analysis concluded that
the residual ZOD beam was from other contributions,
such as imperfect SLM performance due to window
reflections, calibration errors, interpixel cross talk,
and device nonlinearity. The holographic image qual-
ity was maintained after phase compression was
applied.

Various degrees of phase compression were simu-
lated to examine the reconstructed image quality.
The simulation result showed that the phase com-
pressed HOE introduced a 1.5 to 2.8 dB image
SNR degradation when using realistic SLM specifi-
cations, and a reasonably good image quality was
preserved. In addition, the reconstructed image suf-
fered little with respect to diffraction efficiency for a
wide range of phase compression. In the future, we
plan to apply this technique for ZOD suppression
to Fresnel holograms for near-field image display.
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