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Designing near-field computer-generated holograms (CGHs) for a spatial light modulator (SLM) requires
backward diffraction calculations. However, direct implementation of the discrete computational
model of the Fresnel diffraction integral often produces inaccurate reconstruction. Finite sizes of the
SLM and the target image, as well as aliasing, are major sources of error. Here we present a new design
prescription for precise near-field CGHs based on comprehensive analysis of the spatial bandwidth.
We demonstrate that, by controlling two free variables related to the target image, the designed hologram
is free from aliasing and can have minimum error. To achieve this, we analyze the geometry of the
target image, hologram, and Fourier transform plane of the target image to derive conditions for
minimizing reconstruction error due to truncation of spatial frequencies lying outside of the hologram.
The design prescription is verified by examples showing reconstruction error versus controlled param-
eters. Finally, it is applied to precise three-dimensional image reconstruction. © 2014 Optical Society of

America
OCIS codes:
http://dx.doi.org/10.1364/A0.53.000G84

1. Introduction and Background

Holography has been used widely in many areas [1],
including optical trapping and tweezing [2], laser
beam shaping [3], and biomedical imaging [4]. To
produce a high-quality holographic image at a cer-
tain distance, spatial amplitude and phase of the
light must be precisely controlled. Modern spatial
light modulators (SLMs) are becoming the standard
device to create arbitrary complex wavefronts by
modulating the wave magnitude and/or phase. Meth-
ods exist that utilize two modulators to achieve fully
complex modulation [5-7], and some schemes can
achieve complex modulation utilizing a single SLM
with perhaps some trade-offs such as aperture
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sharing [8-10]. Having complex wave modulation
readily available, the design of a desired near-field
computer-generated hologram (CGH) becomes
largely a matter of calculating the inverse diffraction
from the target image back to the SLM. Backward
propagation calculations can be performed using ex-
act point-by-point algorithms [11,12] or various im-
plementations of the Rayleigh—Sommerfeld (R-S)
diffraction formula [13-18]. In addition, given the
pixel size of current SLMs (typically 7-20 pm),
diffraction within the paraxial approximation is jus-
tified for referenceless holography. Thus, diffraction
calculations related to SLMs also can be performed
with the Fresnel diffraction formula using a single
Fourier transform (FT) [19-22]. Taking advantage
of the discrete Fourier transformation (DFT), a single
FT implementation of the Fresnel diffraction inte-
gral (FDI) possesses a much faster computation
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speed, as compared with direct implementations of
the R-S formula, and can have accuracy comparable
to a R-S computation within the Fresnel region [23].

However, direct implementation of these computa-
tional methods can yield inaccurate hologram
reconstruction results. The first problem relates to
sizing the two regions: SLM and target image. For
a finite-sized target image, its spatial bandwidth
determines the size of the hologram generated from
backward propagation. Quite often, this area is
larger than the finite size of the SLM, resulting in
truncation of spatial frequency content. Those spa-
tial frequency components that miss the SLM cannot
be reproduced by the CGH encoded onto the SLM
and are therefore lost in the reconstruction process.
Consequently, the reconstruction cannot reproduce
the original target image. Second, when the back-
ward FDI is digitized so that the DFT can be used
for numerical computations, the possibility of errors
resulting from aliasing also arises. Previous work by
Liu [21] discussed aliasing when using the forward
FDI with a fixed bandwidth source image. However,
this work cannot be readily applied to backward
propagation to design a precise CGH for two main
reasons. First, boundary conditions for the SLM (pri-
marily its finite dimension; see Section 2 for a com-
plete specification of the boundary conditions) were
not considered in a backward diffraction calculation.
Second, the target image bandwidth is now a free
variable, and it will affect error and the setting
of other parameters. For backward diffraction
calculation, either of these reasons could cause
significant error in hologram design and in the recon-
structed image.

Our objective in this paper is to analyze and
minimize these limitations and error sources, so as
to synthesize a desired wavefront for a referenceless
Fresnel hologram using backward propagation from
a target image. This design process needs to be
computationally fast and efficient. The designed
hologram can then be encoded onto an appropriate
SLM, and the reconstructed holographic image
should have minimum error. We solve the problem
of sizing the SLM and target image by requiring
the target image to be accurate in irradiance but with
its phase as a free variable. A quadratic phase is
added to the target image, so that, when a hologram
is designed, its diffracted light fills the target image
region with minimum error. We present a compre-
hensive spatial bandwidth analysis of hologram
design using backward FDI, which allows us to quan-
tify the resulting hologram reconstruction errors
versus both target image bandwidth and quantity
of added quadratic phase. The result is a design pre-
scription for precise hologram generation with mini-
mum reconstruction error. Example simulations are
shown that demonstrate practical hologram design
within specific limits.

This paper is organized as follows. In Section 2, we
take a detailed look at the boundary conditions of the
backward diffraction problem. First, the relationship

between the target image bandwidth, sizes of the
SLM and target image, and their separation distance
is examined. Second, we derive the conditions for
adding quadratic phase to the target image as a free
variable in order to properly scale between the two
planes and to reduce error in the reconstructed
image. Third, the geometry of the light path from
the target image, past the SLM, and onto the FT
plane of the target image allows the path of particu-
lar spatial frequency components to be traced. We
perform this geometrical analysis, which identifies
the regions of the target image that experience trun-
cation of some spatial frequency components, and
derive conditions that minimize error in the recon-
structed images. Last, the conditions to avoid alias-
ing are derived. We will show that the conditions for
minimum error due to truncation of spatial
frequency components at the SLM plane are more
stringent than the conditions to avoid aliasing.
Section 3 is devoted to numerical simulations where
the backward diffraction method to design the holo-
gram is verified and the errors are quantified. First,
the backward diffraction routine derived in Section 2
is validated against an exact point-by-point diffrac-
tion computation. The major content of this section
examines hologram designs for different cases of
optical layout. The root-mean-square (RMS) error
calculated for each reconstructed image and the
point of abruptly increasing error are compared with
the theoretical predictions of Section 2. A discussion
that summarizes our findings concludes the paper in
Section 4.

2. Principles of Hologram Generation by Backward
Propagation

We first consider the problem in the continuous,
scalar-wave domain. As illustrated in Fig. 1, plane-
wave light, of wavelength A, illuminates a pixelated
SLM in the z = 0 plane. The SLM is L, x L, in size
with a square pixel pitch of A, and a pixel number
of M,xM, The closest possible hologram
reconstruction plane is equal in size to the SLM.
At this minimum distance, every image point can
be reconstructed by a properly sampled Fresnel
phase encoded lens at the SLM hologram plane

N,

illumination /

Laser = 2
SLM ‘ e |
>
Diffracted /
wave /|
Reconstructed
image plane
Fig. 1. General forward diffraction problem of generating a

desired target wavefront (amplitude and phase) by propagation
from an SLM to the target plane.
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(i.e., R-S scalar diffraction). In other words, there is
no vignetting of the reconstructed image. This mini-
mum distance is defined as twice the critical length,
z,, defined by

(1)

Previous authors have introduced the critical length
and used 2z, to define the closest distance to employ
the FDI method [14,21]. Subsequently, Davis and
Cottrell also identified z, as the minimum Nyquist
sampled focal length of a phase-encoded lens
centered on axis [24].

However, the problem illustrated in Fig. 1 is some-
what ill posed. The difficulty arises from the readily
apparent boundary conditions at the target image
and SLM planes; i.e., each is bounded in lateral ex-
tent to a region of interest that will later be sampled
for digital computations. Specifically, for forward dif-
fraction calculations from the bounded SLM plane,
the extent of the diffraction solution, which stays
within the right half plane from -z/2 to +xz/2 in
diffraction angle, extends outside the bounded target
image, as shown in Fig. 1. When the SLM is pixe-
lated, the referenceless hologram reconstructed
image is located at the zeroth diffraction order.
Due to a relatively large pixel size, the majority of
the zeroth-order diffracted light stays in a relatively
small area. Strictly speaking, however, because of the
sharp pixel edge, the diffracted light contains high
spatial frequencies. This high-spatial-frequency
light, although weak, diffracts at large angles outside
the bounded target image. This is most easily
visualized using the R-S formulation, where the dif-
fracted field is given by a convolution of the bounded
wave, leaving the SLM with the unbounded spherical
phase kernel. For the forward diffraction calculation,
the area outside the region of interest is ignored as a
“don’t care” region. Furthermore, contributions to
the convolution integral far from the center of the
kernel are insignificant, and a practical implementa-
tion with minimum energy outside the region of
interest can be formulated [23]. For a paraxial dif-
fraction problem that employs the Fresnel approxi-
mation, bounded support at the SLM and target
image planes creates a similar problem. But again,
energy outside the region of interest can be mini-
mized by correctly sizing the observation region
and/or source function bandwidth to fit the problem.

Fresnel diffraction may be expressed using the FT
integral as

Ulx,y) =
ejkz +o00
- PP +y?) / { U(&, )€+ }e—j%(x6+yn) dédy.
J -c0
(2)

where & = 27/4. The source amplitude distribution is
given by U (&, ), and the diffracted field at a distance
z is given by U(x,y). This forward Fresnel transform
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can be expressed compactly using Fourier operator
notation as

jkz
Ulx,y) = ;Zefﬂxzﬂz)F{U(a n)ed'ﬁfzwz)}. (3)

In Eq. (3), F'{} denotes the forward FT, and the spatial
frequency variables are given in terms of target
plane coordinates (x,y) as f, = x/z; f, =y/iz. We
make the following definitions for the quadratic
phase or chirp functions: the term, &/#€+7) within
the FT is denoted as ¢;(&, 1), and the premultiplier
term, e7/%2*+¥") is denoted as ¢q(x,y).

When using Eq. (3) for forward diffraction, the
source function U (&,5) has bounded support and so
does the product of U(&,7) and ¢4 (&, 7). This product
function cannot have a bounded spectrum (.e.,
bounded FT) and thus cannot be rigorously ex-
pressed in a bounded region at the target image
plane. In practice, limiting the bandwidth of the
source function narrows the maximum diffraction
angle, so that the source and diffraction regions of
interest can be bounded and produce minimal error.
The error arises from the fact that the source cannot
be band limited without making its spatial extent in-
finite. To solve this problem in practice, the usual ap-
proach is to apply an infinite impulse response filter
to the source function that leaves support for the
spectrum unbounded but still confines the major
spectral energy to a usefully limited spectral region.
Truncation at the edge of the diffraction region of
interest and disregarding the lost energy can now
result in a tolerably insignificant error.

To design the hologram that will be coded onto the
SLM to reconstruct the target image, the problem is
reversed, and backward diffraction is used to deter-
mine the desired light field at the SLM plane. For
backward propagation, Eq. (3) is inverted [25] as

U (E.n) = (<jlz)ehe2E+P -1 { U(x.y)e/6"+%) } (2<0).
4)

where F-1{} denotes the inverse FT, and the spatial
frequency variables are given in terms of the SLM
plane coordinates (¢,7) as f; = &/Az; f, = n//z.

As the target function and SLM are necessarily
finite in size, the backward diffraction solution will
extend beyond the SLM edges due to the same
bounded support issue as faced by forward diffrac-
tion. Thus, in practical design problems, the band-
width of the target function must be subjected to a
bandwidth-limiting process. In order to have a trac-
table target function, the hard edges of the image
also must be low-pass filtered and zero padded. An
important difference for hologram design by back-
ward diffraction, as opposed to forward diffraction,
is that some important information may extend
beyond the SLM boundary, and this information is
necessary for rigorously accurate target function



reconstruction when the SLM is illuminated. Han-
dling and bounding this hologram reconstruction
error is an important result to be presented in
this paper.

A. Sizing the Hologram

Based on the discussion above, the first aspect of
hologram design, which can be dealt with in the
continuous domain, is the sizing of the SLM and
the target image with respect to each other and their
separation. For backward diffraction, a phase-flat
target image illuminated by a plane wave will not
diffract back to a smaller source area. A quadratic
phase, equivalent to a positive lens in the Fresnel
approximation, is required in the target image. This
requirement is illustrated in Fig. 2, and it is equiv-
alent to illuminating a phase-flat target image with a
converging spherical wave. An FT plane will exist at
the center of curvature of this converging wave. In
addition, if this phase function is in the form of a pos-
itive lens, it is opposite in sign to ¢s(x,y). By adjust-
ing the quadratic phase in U(x,y), the phase of the
product {U(x,y)¢s(x,y)} can be reduced to zero or
to a small residual quadratic phase of either a posi-
tive or negative sign.

Figure 2 also illustrates the geometrical optical
path of the highest spatial frequency in the target im-
age. The SLMs shown in Fig. 2 are sufficiently wide,
as to not truncate any of this high spatial frequency
light. When the SLM is encoded based on this com-
puted backward-propagated light field, all the light
at this spatial frequency can be diffracted by the
SLM to the reconstructed image plane. The heavy
solid lines in Fig. 2 illustrate the minimum size of
the SLM to avoid high-frequency truncation. Two
general cases are illustrated: the SLM to the right
of the FT plane (requiring quadratic phase radius of
curvature larger than the separation between the
SLM and target planes), and the SLM to the left
of the FT plane (requiring a radius of curvature
smaller than that separation).

Diffraction at spatial

4 Equivalent
frequencies of +fi

lens

Minimum SLM size to avoid
truncating high frequencies

Ly'xLy'

SLM plane 1 LoxLy

SLM plane 2 wx Ly,
Target image plane

Fig. 2. Effect of a quadratic phase in the target image expressed
as an equivalent lens. Backward propagation results in an FT
plane located at the phase center of curvature. Two of the many
possible SLM planes are shown that accommodate the highest spa-
tial frequency light. These possible SLM sizes are bounded by the
heavy solid lines in the figure that connect to the highest spatial
frequency (£f},) locations in the FT plane (red dots).

To fit the backward diffraction field onto the finite
SLM area, we introduced a quadratic phase in the
target image. The term in Eq. (4) to be inverse
Fourier transformed is given by

Ux.y)a(x.) = Ur(x.y) exp [ﬂm s +y2)}
. T 2 .2
xexp[ Jizfzc (x?+y )], (5)

where a dimensionless propagation distance z; is de-
fined as zy = |z|/z.. The target image amplitude is
now the explicitly real function Ug(x,y). The param-
eter a controls the curvature of the quadratic phase
added in the target image. The sign of ¢ can be either
+ or —, and, for ¢ = 0, the quadratic phase added to
the target image exactly cancels the phase of ¢9(x, ).
In this case, backward Fresnel propagation reduces
to the inverse FT of the real target image.

Although placing the SLM at the FT plane is at-
tractive because it has the minimum required size
for the SLM (Fig. 2), it is difficult to implement in
practice. The strong DC component [26] of the FT re-
quires a very large dynamic range for the light at this
plane and for the amplitude modulation capability of
the SLM. For practical reasons, the SLM is best
placed a short distance away from the FT plane to
alleviate this dynamic range problem. Thus, the
parameter a should be small, to avoid high-frequency
truncation, but not be exactly zero.

The truncation effect in Fresnel holograms was
discussed previously by Stern and Javidi [27]. From
the spatial-frequency perspective, the spectrum of
the target image was low-pass filtered by the
hard-edged aperture function, resulting in error in
the reconstructed image. Without phase added to
the object, the aperture effect was simple and space
invariant. In contrast, we introduced an additional
quadratic phase to the object that interacted with
¢a(x,y) to alter the overall phase profile. For this
case, the effect of truncation on the reconstructed ir-
radiance image is spatially dependent, since Ug(x,y)
with the added phase being low-pass filtered and
converted to irradiance. Phase was added to the tar-
get image in order to scale the diffracted field to the
SLM aperture. It also allows us to minimize the trun-
cation problem and therefore ensure more precise
image reconstruction.

We now proceed to analyze the requirements to
avoid high-frequency truncation using geometrical
analysis. The lateral size of the target image and
the hologram are denoted by L,, and L,. The bounds
on a to avoid high-frequency truncation can be de-
rived using similar triangles shown in Fig. 3 for pos-
itive a and negative a. For both cases, similar
triangles have the common solid (green) and dashed
(red) sides. The heights of the similar triangles are h
and L, /2 + L,/2 for the smaller and larger triangles,
respectively. At the FT plane, the highest spatial
frequency in the target image diffracts to height x,
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(a) Critical ray for a spatial frequency
that must be inside the SLM.

FT  SLM \ st Target image
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Fig. 3. Light paths for backward propagation between the target
image and SLM planes when there exists an FT plane located at a
finite distance from the target image. 0,,,, is the maximum diffrac-
tion angle from the target. Critical rays for high-frequency
truncation are shown. In (a) a positive value a is shown and in
(b) a negative value.

from the z axis. The value of @ must allow the dashed
(red) critical ray for the highest spatial frequency to
reside within the SLM area.

From geometry, the condition on a to avoid high
spatial frequency truncation is given by

Zch

L./2 —1°
Lo/z_zfzcemax + 1

(6)

laz,| <

where the minus sign in F should be used for a pos-
itive value of a and vice versa. The meaning of this
inequality will be explored further when the problem
is discretized.

B. Discretization

To implement our method by digital computation,
the problem was digitized. The geometry of the dis-
cretized diffraction problem is shown in Fig. 4. The
computation window is M pixels wide at both planes.
The width of the active windows for the hologram
and target image are M, and M, pixels, respectively.
The computation window, an M x M matrix, is intro-
duced along with the zero padding factors u, =
M /M, for the SLM plane and y,, = M /M, for the tar-
get image plane. Both padding factors are greater
than or equal to 1. The sample interval at the target
image in relation to the SLM pixel size is determined
from the FT spatial frequency definition as

AN )

A =
MA, Ho

The normalized bandwidth of the target image, b,
determines the maximum diffraction angle from the
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z=zfzc

Fig. 4. Relationship of the hologram (SLM) plane (&,7) at z =0
with pixel pitch A, to the reconstructed image plane (x,y) at z =
zpz, with pixel pitch A. The computation window is M pixels wide
at both planes. The active hologram window is M, pixels wide, and
the active window of the target image is M, pixels wide.

target, which is 0, = bOy,,, where Oy,, = 1/2A de-
notes the paraxial approximation to the diffraction
angle at the Nyquist sampling frequency.

For backward propagation, correct sampling of the
{U(x,y)p2(x,y)} product in Eq. (5) is determined by
its bandwidth. This in turn depends on the band-
widths of Ug(x,y) and the product of the two expo-
nentials in Eq. (5). The product of the two
exponentials can be reduced to a single quadratic
exponential with an equivalent radius of curvature,

Z2eq, given by

1 1 1

_:_( a ) =~ f(a). (8)
Zeq 2 \2rta z

The total available sampling bandwidth at the target
image plane, 1/2A, must be greater than or equal to
the sum of the bandwidths of the two functions in the
product {U(x,y)ps(x,y)}. This relation is expressed
as

M, A b 1

20z 1@+ oa <34 ©
where the first term represents the bandwidth of the
combined product of the quadratic exponentials, and
the second is the bandwidth allocated to the target
image function. Equation (9) is the expression of
the bandwidth constraint to prevent aliasing of the
{U(x,y)¢s(x,y)} product with the boundary condi-
tions noted above. This may be solved for the condi-
tions on a for a given target image bandwidth, b, as

Y4
la| < % (10)
(15 1



where the minus sign in F should be used for a
positive value of a and vice versa, both here and
in Eq. (11).

The condition to avoid high-frequency truncation
[Eq. (6)] can also be converted to the variables of
the discrete problem. Substituting for L,,L,, and
Omax in Eq. (6), one obtains

Zfzif_l. (11)
Hw(-bpy) T

la] <
For u, = 1, Eq. (11) is identical to Eq. (10). In the DFT
domain, the function calculated at the SLM plane by
the inverse DFT is one period in a plane of sampled,
replicated units [28]. Clearly, this makes no sense
when the objective is to study the effects of high spa-
tial frequency components that would miss the SLM
edge. Instead, these high-frequency components
would be aliased back toward the center. For this
reason, the case of y, =1 is not of interest. For
U, > 1, Egs. (10) and (11) are no longer identical,
and Eq. (11) becomes a more stringent condition
on a. This implies that proper sampling of
{U(,y)po(x,y)} is guaranteed when the condition
for no high-frequency truncation at the SLM edges
is met.

At the SLM plane, the full complex field is needed
to program the SLM values. This requires that the
product of the pre-exponential ¢;(£,7) and the in-
verse FT, F"1{U(x,y)¢,(x,v)}, in Eq. (4) also be prop-
erly sampled. This in turn requires that the SLM
plane sampling bandwidth be sufficient as given by

M, 1 _ 1
20z 2uyA, =24,

(12)

where the first term represents the bandwidth re-
quired for ¢(&,7), and the second term is the band-
width of the inverse FT of the {U(x,y)@s(x.y)}
product. The second term is independent of @ but de-
pends on the spatial width of the target image region.
Choosing the target plane padding factor to be
1, = 2 apportions the available bandwidth equally
between the quadratic phase, ¢(¢,7), and
FYU(x,y)p2(x.y)}. After noting that z = z¢z., and
substituting for z. in Eq. (12), this simply states that
zp > 2. This is always true since z > 2z, is required to
avoid vignetting of the reconstructed image. It is im-
portant to notice that the right hand side indicates
that the full bandwidth of the SLM is utilized. To
correctly sample the hologram without aliasing for
the subsequent forward propagation calculation,
however, it is required that the sampled data have
bandwidth of half the Nyquist frequency of sampling
[21]. This may be achieved by resampling the matrix
for the forward propagation calculation by a factor of
two. At this point, we choose u, = 2 for equal size and
symmetry of the regions of interest. As a result of
Eq. (11), the bandwidth of the target image must
be strictly less than half the Nyquist frequency of

the sampling because, if (1 —byu,) goes to zero, the
allowed range of a also goes to zero.

In summary, the conditions for applying a single
DFT implementation of the inverse FDI have been
derived to obtain the correctly sampled magnitude
and phase of the diffracted field. Besides the require-
ment of padding factors u, and u,,, proper choice of a
for a given target image bandwidth b is sufficient for
using the FDI to solve the backward propagation
problem. A quadratic phase must multiply the flat-
phase target image, and its curvature must satisfy
Eq. (11) to guarantee that no high-frequency trunca-
tion occurs at the SLM and for proper sampling at
the target plane. Also, z > 2z, guarantees proper
sampling at the SLM plane. Finally, note that the
right side of Eq. (12) requires the use of the whole
available bandwidth of the SLM, and that this sam-
pling period must be considered for any subsequent
forward FDI diffraction computations.

3. Simulations

To design a hologram and validate its design or to
study the effects of encoding algorithms at the SLM
plane, at least two approaches are possible. First,
we validate the SLM design by doing a point-by-point
backward R-S computation from the target function.
This is computationally slow, so only a few cases were
studied. Itis alsoimportant to propagate the designed
hologram back to the reconstruction plane and
compare it with the original target image. In the next
section (Section 3.A), our backward design FDI algo-
rithm with added quadratic phase is validated
against an exact point-by-point diffraction calculation
from points in the target image back to the SLM
plane. Following that, example holograms are de-
signed and reconstructed using the FDI method,
and the RMS error dependence on the various param-
eters is determined.

The following parameters were used throughout
the simulations: 1 = 633 nm, A, = 13.68 um, and
for backward propagation, u, =y, =2 and M =
1024. For forward propagation, the matrix (M x M)
was resampled by a factor of two, as described in
Section 2.B, becoming 2048 x 2048. The quality of
reconstructed images was quantified by using the
RMS error, defined by

1
ORMS =} \// [, (x.y) - I(x,y)Pdxdy. (13)
t

where I,(x,y) and I,(x,y) are the intensity of the
reconstructed image and the target image, respec-
tively, with equalized irradiance. I; is the averaged
irradiance of the target image.

A. Validating the Backward Propagation Algorithm

The algorithm for fast backward propagation using a
single DFT, as described in Eq. (4), and the sampling
scheme of the previous section was validated for ac-
curacy against an exact R-S diffraction calculation.

20 September 2014 / Vol. 53, No. 27 / APPLIED OPTICS G89



Fig. 5. Double Lena target image (512 x 512) with a b =0.35
low-pass Butterworth filter applied.

The exact computation used a point-by-point sum-
mation of the backward diffracted fields from each
pixel of the target image. Although computationally
slow, this technique is rigorously correct. Complex
wave fields at the SLM plane computed by both
methods were compared using a double Lena target
image, shown in Fig. 5. A fourth-order, digital Butter-
worth low-pass filter was applied to the target image
to confine its bandwidth [29]. The irradiance trans-
mittance of the filter was 0.1 at the cut-off frequency
given by b, and 95% of the energy was contained
within the circle of spatial frequencies less than b.
When normalized to the same total energy, the com-
parison diffracted wave amplitudes for all pixels
differed by less than one part in 10712, and the phase
differed by less than 10~!° radians. When the back-
ward and forward FDI algorithms were used to-
gether without any truncation of the fields at the
SLM plane, the exact target image was recovered
(<10719% RMS error).

B. Hologram Design Examples

To verify and illustrate the assertions of the previous
sections, we conducted a series of hologram design
simulations using backward and forward diffraction.
A complete cycle of backward and forward diffraction
without SLM encoding recovers the exact target im-
age. Truncating the forward wave to occupy the SLM
window will result in small or large errors. Because
the inequality governing high-frequency truncation
is more stringent than the one governing aliasing,
the reconstructed image will be examined with vari-
ous values of added quadratic phase, a, and target
image bandwidth, b, to see the effects of violating
the inequality of Eq. (11) on the reconstructed image
quality.

Equation (11) specifies that, to avoid high-
frequency truncation, the phase chirp factor ¢ must
be limited to a region that depends on target image
bandwidth, 6. We plot this region as a function of the
normalized propagation distance z; in Fig. 6. Three
different target image bandwidth parameters
(b = 0.25, 0.35, and 0.45) were chosen for simulation;
all were less than the absolute limit of 0.5 indicated
by Eq. (11). These curves illustrate that a larger
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Fig. 6. Range of allowed phase chirp factor a to avoid high-
frequency truncation for three bandwidths, & = 0.25 (blue), 0.35
(red) and 0.45 (black). The minimum and maximum boundaries
of a are plotted as dashed and solid lines, respectively.

bandwidth tolerates a smaller range of a. For
example, at the fractional distance z; = 8, the range
of a is Aa0.25 = [—088, 115] for b = 025, Aa0A35 =
[-0.55,0.65] for b = 0.35, and Aqgg4s = [-0.19,0.21]
for b = 0.45, respectively.

The effect of high-frequency truncation on the
quality of the reconstructed image was first exam-
ined by using one-dimensional (1D) spatial cosine im-
ages at z; = 8. The amplitude of these cosine images
is defined by U (x,y) = cos(x(xb/A,)). Cosine images
serve as good candidates to verify Eq. (11) because
the majority of their energy is concentrated at a sin-
gle spatial frequency determined by b. Therefore, the
conformity between the reconstructed and target im-
ages will be broken when a specific value of a causes
high-frequency truncation. Figure 7 shows the RMS
error of reconstructed cosine images versus chirp fac-
tor a. The high-frequency truncation effect is pro-
nounced for all three cosine frequencies, as all
three curves for RMS error show a sharp increase
when the corresponding spatial frequency moves off

80

-
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a

Fig. 7. RMS error of reconstructed 1D spatial cosine images
versus phase chirp factor a. The range allowed for a to avoid
high-frequency truncation for each bandwidth is identified as
Aa0'25 for b = 025, Aa0‘35 for b = 035, and AGOA45 for b = 0.45.
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Fig. 8. RMS error of the reconstructed image versus phase chirp
factor a. The allowed range of a without high-frequency truncation
for each bandwidth is identified as Aag g5 for b = 0.25, Aag 35 for
b = 0.35, and Aa 45 for b = 0.45. The truncation region for the low-
est 10% of spatial frequencies is marked in gray. The truncation
region of the DC component is marked in light green.

of the SLM region and becomes truncated. The sim-
ulation results are in good agreement with Eq. (11).

To implement our proposed method with a gray-
scale image, we conducted simulations using the
double Lena target image at a distance of z; = 8.
The target image was band limited by the Butter-
worth low-pass filter. The RMS error of the recon-
structed images versus a is plotted in Fig. 8.
Different from the RMS error curves for cosine target

images, no abrupt increase in error was observed at
the high-frequency truncation boundary. At the
boundary of the high-frequency truncation region,
the reconstructed images for all three bandwidths
have around 0.1% RMS error. This is because the
main spatial frequency content of the target image
is concentrated at low frequencies, and the small
residual error arises from the spectral energy beyond
the cut-off frequency of the Butterworth low-pass
filter. High-frequency truncation does not cause a
significant degradation of the reconstructed image
near the onset value of a. The RMS error curves
increase steeply when major spectral energy in the
low-frequency range (from the DC component [26]
to b = 0.1) is truncated. This is illustrated in Fig. 8,
where the RMS error increases to 10%—30% when
the truncated frequency reaches & = 0.1. Finally,
the three RMS error curves converge when trunca-
tion of the DC component begins at the image edges
resulting in an even larger RMS error.

To examine the reconstruction quality for different
cases, a mosaic of representative reconstructed
images is displayed in Fig. 9(a). At the onset of the
high-frequency truncation region, reconstructed
images resemble the target image. Truncation
causes minor ripples to appear at the outer edges
and blurs some fine spatial structures, resulting in
a small RMS error. For example, Figs. 9(b)-9(d) show
reconstructed images for ¢ = 1 and bandwidths of

(@) | pn2

Fig. 9. (a) A mosaic of representative reconstructed images for various values of the phase chirp factor a (columns) and fractional band-
width & (rows). Below this, in the bottom row, left to right are images (b)—(d) that show zoomed views of reconstructed images [green dashed
squares in mosaic (a)] for a = 1 and bandwidths of b6 = 0.25 in (b), b = 0.351in (¢), and b = 0.45 in (d), respectively. Red arrows indicate the
ripples caused by high-frequency truncation. In the bottom row, further to the right, images (e)—(g) are zoomed views of reconstructed
images [red dashed squares in mosaic (a)] for a = -2 and bandwidths of b6 = 0.25 in (e), b = 0.35 in (f), and b = 0.45 in (g), respectively.
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b =0.25, 0.35, and 0.45. For a = 1, the target image
with a bandwidth of & = 0.25 remains within the
truncation-free region, while target images with
the other two bandwidths experience high-frequency
truncation during the reconstruction process. As a
result, small ripples are visible in Figs. 9(c) and 9(d)
near the outer edges. The small, single ripple visible
in Fig. 9(b) is also present in the target image and
results from the Butterworth low-pass filter, not
high-frequency truncation.

At larger values of a, low frequency and then DC
content are lost. In Fig. 9(a), this truncation results
in severe degradation at the edges of the recon-
structed images. More specifically, Figs. 9(e)-9(g)
show reconstructed images for ¢ = -2 and band-
widths of b = 0.25, 0.35, and 0.45. All three images
suffered a severe aperture effect. The upper edge
and left edge are completely lost, and the entire
image is affected by significant ripples.

By examining the reconstructed images for differ-
ent values of a, we notice that the truncation effect is
spatially dependent. At the onset of high-frequency
truncation, the minor ripples are only observed
at the outermost image boundaries as seen in
Figs. 9(b)-9(d). Similarly, truncation of the DC com-
ponent also starts at the outer edges and proceeds
toward the center. In addition, the ripple fringes in
truncation of the DC component have the largest
period at the corner, and the period decreases as they
approach the center as seen in Figs. 9(e)-9(g). This
phenomenon is predicted by Fresnel diffraction
and also by the geometric analysis, shown in Figs. 2
and 3, which approximates Fresnel diffraction.

Finally, we demonstrated three-dimensional (3D)
holographic image reconstruction. As illustrated in
Fig. 10(a), two Lenas in the target image are sepa-
rated in distance along the z axis. The upper-left Lena
image is placed at z; = 4; the lower-right image is
placed at z; = 16. Both images have a normalized
bandwidth of & = 0.35. In the simulation, the chirp
factor a was set to be ¢ = 0.6, so that the backward
FDI calculation for both images stayed within the
truncation-free region defined by Eq. (11). The two
hologram fields generated by these images were
added and encoded on the SLM. The holographic
images were reconstructed at the two preset propaga-
tion distances of zy = 4 and z; = 16, as shown in
Figs. 10(b) and 10(c). At each distance, the corre-
sponding Lena image was successfully reconstructed
with minimum error while the other image was
blurred.

In summary, these simulations validate the fast
backward diffraction routine that we implemented.
When the computed hologram field was not trun-
cated at the SLM edge, the RMS error of the recon-
structed image was less than 1071°%. The size of
the field distribution at the SLM was controlled by
the phase chirp added to the target image using the
parameter a. The chief error mechanisms were
related to truncating information at the SLM edges
as a became larger. High frequencies were lost first at
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Fig. 10. Illustration of 3D holographic image reconstruction.
(a) The target image with two Lena images displaced along the
z axis at zr = 4 and z; = 16. (b) The reconstructed image at the
plane z; = 4. (c) The reconstructed image at the plane z; = 16.
Intensity images are shown with their dynamic range expanded
to fill the entire gray scale, 0-255.

the edges of the reconstructed image. As lower
frequencies became truncated, larger errors ap-
peared, mostly in the form of ripples and resolution
loss localized at the image edges. Severe errors
resulted when low spatial frequencies and the DC
component were truncated for large values of a. This
error also began at the image edges and progressed
inward, blocking more of the reconstructed image.
The limits on @ derived in Section 2 were demon-
strated in the simulated examples. The onset of
aliasing was not reached in any of the test cases,
since it was a less severe limit, as shown by Egs. (10)
and (11). Most importantly, limiting the bandwidth of
the target image was shown to be important in reduc-
ing error in the reconstructed image. Target image
bandwidth is strictly limited to be less than half
the Nyquist frequency of the image sampling, and,
for practical cases, it should be less than this.

4. Conclusion

We have presented a design prescription and simu-
lated the performance of fast backward Fresnel dif-
fraction for precise CGH design. Our method used a
single DFT implementation of the FDI. Careful con-
sideration was given to the spatial bandwidths of the
target image and the hologram encoded onto the
SLM and their boundary conditions. The target im-
age bandwidth and added quadratic phase were
treated as free variables that could be adjusted to
minimize reconstruction error.

Truncation of the backward diffracted field at the
edges of the SLM was found to play a major role in



introducing error in the reconstructed image. This
error resulted from the spatially limited support
(finite width) of the target image and the SLM.
The conditions to avoid this error were derived
and shown to be more stringent than those used to
avoid aliasing of the sampled functions. The quad-
ratic phase added to the target image can reduce this
error by sizing the backward diffracted light to better
fit the SLM area. The bandwidth of the target image
also played a role in the spatial distribution of the
backward propagated light at the SLM. This band-
width was strictly limited to less than half the
Nyquist sampling frequency of the target image.
An inequality was derived that computed the onset
conditions for error due to truncation of spectral fre-
quency components at the SLM edge. The truncation
onset depended on the parameters governing the
added phase and the target image bandwidth as well
as the zero-padding factors used at the target and
SLM planes. Zero padding was required at both
planes. Finally, proper sampling in the backward
FDI algorithm required that the distance between
the target image and SLM must be greater than
twice the critical distance, z > 2z.,. We showed that
the designed hologram pattern used the entire spa-
tial bandwidth of the SLM. To correctly sample this
SLM pattern for forward diffraction computation
with the FDI, it must be resampled at the SLM by
a factor of two to avoid aliasing when the recon-
structed image was computed.

The accuracy of the fast FDI method for hologram
design was verified by precise agreement between
the simulations of backward diffraction by the fast
FDI method and by an exact point-by-point R-S
calculation. Simulations of typical optical hologram
design arrangements illustrated reconstructed
image quality in the low error region and for mild
and severe spatial frequency truncation error. RMS
error for the images was used to quantify the error
versus the control parameters of target image band-
width and added phase chirp. For the three
bandwidths that were investigated, the low recons-
truction error region for the phase chirp parameter
was narrow for a target image normalized bandwidth
of 45% of the Nyquist frequency, but the low error re-
gion increased substantially as the image bandwidth
was decreased. Regions of RMS error <0.1% could be
found for all target image normalized bandwidths
less than 45%. Careful choice of the bandwidth
reduction method for the target image is required,
so that this process does not introduce additional un-
wanted image artifacts. Finally, a 3D target image
was encoded using our prescription, and accurate
3D reconstruction at the different in-focus image
planes was demonstrated.

This work was supported by one grant jointly
from the Army Research Office and the Defense
Advanced Research Projects Agency (DARPA) as
part of the Optical Lattice Emulator Initiative
(OLE) program.
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