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Compressed ultrafast photography (CUP), as the fastest receive-only ultrafast imaging technology by combining
steak imaging and compressed sensing (CS), has shown to be a powerful tool to measure ultrafast dynamic scenes.
Through a reconstruction algorithm based on CS, CUP can capture the three-dimensional image information of
non-repetitive transient events with a single exposure. However, it still suffers from poor image reconstruction
quality on account of the super-high data compression ratio induced by the undersampling strategy. Here, we
propose a total variation (TV) combined with block matching and 3D filtering (BM3D) reconstruction algorithm
to improve the image quality of CUP, which is named as the TV-BM3D algorithm. The proposed algorithm can
simultaneously exploit gradient sparsity and non-local similarity for image reconstruction by incorporating TV
and BM3D denoisers. Both the numerical simulations and experimental results show that, compared with the two
conventional two-step iterative shrinkage/thresholding and augmented Lagrangian algorithms in CUP, the TV-
BM3D algorithm can not only improve the image reconstruction quality, but also strengthen the noise immunity
of this technique. It is prospected that these improvements in image reconstruction will further promote the

practical applications of CUP in capturing complex physical and biological dynamics.

1. Introduction

Single-shot ultrafast optical imaging is an important branch in the ul-
trafast optical imaging field. This technology can capture non-repeatable
or difficult-to-repeat ultrafast dynamic events in real time, which of-
fers an imaging speed over three orders of magnitude higher than
that of charge-coupled device (CCD) or complementary metal-oxide-
semiconductor (CMOS) detectors. Therefore, it has significant applica-
tions in not only scientific but also industrial and military fields [1].
Single-shot ultrafast optical imaging based on passive detection, which
requires no specific active illumination, is widely used to record pho-
toluminescent, chemiluminescent and color-selective transient scenes.
According to ways of obtaining the images of recorded objects, there
are two general techniques: direct imaging and reconstruction imag-
ing. The direct imaging techniques, such as ultrafast framing cameras
[2] and high-speed sampling cameras [3], have succeeded in captur-
ing shockwave dynamics [4], electron energy transport [5] and plasma
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dynamics [6]. However, they still suffer from either a poor sequence
depth, i.e., the number of images per shot, or very few pixel counts per
image. To overcome these limitations, compressive sensing-based recon-
struction approaches including compressed ultrafast photography (CUP)
[7-9] and multi-aperture compressed sensing CMOS [10] have been pro-
posed to vastly compress the data throughput by taking advantage of the
sparsity of dynamic scenes.

By combining compressed sensing algorithms with the streak cam-
era, CUP develops as a single-shot and receive-only imaging approach
requiring no active illumination and capable of capturing ultrafast time-
evolution events at speeds up to 10'3 frames per second with a se-
quence depth of several hundred frames. Since its proposal, CUP has
attracted great attention from scientists. To date, this technology has
been successfully applied in capturing flying photons [7,11], measuring
the spatiotemporal intensity of ultrashort laser fields [8,12], recording
four-dimensional information simultaneously [13], and phase-sensitive
imaging [14].
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Fig. 1. Schematic diagram of data acquisition for CUP, where, t: time; X, y: spa-
tial coordinates of the dynamical scene; x’, y’: spatial coordinates at the streak
camera; C: spatial encoding operator; S: temporal shearing operator; and T: spa-
tiotemporal integration operator.

In CUP’s operation, the three-dimensional (3D) x-y-t information of a
dynamic scene is first captured by a streak camera after random encod-
ing, and then the CS algorithm is used to recover the original dynamic
scene. During the image acquisition, the target scene has a rather high
portion of its information lost due to pseudo-random binary encoding,
which makes the CUP a kind of lossy imaging. In addition, the target in-
formation is inevitably polluted by noise during the image acquisition.
Therefore, the finally reconstructed images are often of poor quality and
low accuracy. In order to make up for these defects, various improving
methods have been proposed in recent years, such as the spatial and
strength constraint reconstruction algorithm [15], the optimization of
the encoding pattern method [16], and the augmented Lagrangian (AL)
algorithm [17]. However, all these algorithms exploit total variation
(TV) as the regularization function, which means that gradient sparsity
is utilized as the main prior information for image reconstruction. Here,
we report a symphysic algorithm jointly based on TV and block match-
ing and 3D filtering (BM3D), named as the TV-BM3D algorithm. In this
algorithm, the generalized alternating projection (GAP) framework is
adopted [18], and TV and BM3D denoisers are employed to solve the
image denoising sub-problem. Compared with the algorithms based on
TV regularization, The TV-BM3D algorithm simultaneously exploits the
sparsity in the gradient domain and non-local similarity of images to
ensure a higher reconstruction quality. In this paper, the TV-BM3D al-
gorithm is also compared to the two conventional algorithms based on
TV regularization, i.e. AL algorithm [17] and two-step iterative shrink-
age/thresholding (TwIST) algorithm [19], in image reconstruction. We
numerically simulate a moving Shepp-Logan (S-L) phantom in space
and a rotating fan polluted by various noise levels, and experimentally
measure a spatially modulated picosecond laser pulse. Both the sim-
ulation and experimental results demonstrate the effectiveness of our
proposed algorithm.

2. Methods

In a CUP system, the target dynamic scene is first randomly encoded
in space and then sheared sequentially by a streak camera according
to its time of arrival at the detector. Finally, a CCD camera spatiotem-
porally integrates all the temporally sheared images under a single shot
exposure. As shown in Fig. 1, a 3D x-y-t data cube representing the target
dynamic scene is transformed into a two-dimensional (2D) x’-y’ image to
be captured by the CCD. Considering the noise introduced by the mea-
surement device, the image acquisition process can be modeled as [7]:

E(x',y")=TSCI(x,y,t) +n=0I(x,y,t) +n, (1)

where I(x, y, t) is target dynamic scene with N elements, E(x’, y’) is a
noisy observation with M elements captured by CCD. C, S and T are
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Fig. 2. Flow chart of the TV-BM3D algorithm.

spatial encoding, temporal shearing and spatiotemporal integration op-
erators, respectively. The analytical expressions of operators C, S, T can
be found in Ref. [9]. O is a combined linear operator, and n represents
noise.

In order to obtain the target dynamic scene, I(x, y, t) needs to be
recovered from E(x’, y’), which requires solving Equation (1) in reverse.
Typically, M is much smaller than N, thus the inverse problem is ill-
posed, and priors about I(x, y, t) are often needed. One way is to solve
a constrained optimization problem [20], which can be expressed as:

min &(1)s.t. O ~ E|3 <e, )

where ®(I) is the regularizer representing the prior information, ||.||, is
the I, norm, and ¢ is a positive parameter dependent on noise level.

We extend the GAP method of Ref. [18] to the above optimization
problem with an inequality constraint, and the problem (2) can be ex-
pressed equivalently as:

mins.t.®(I) < sand||OT — E|3 <e, 3)
where § is the radius of the generalized [; ,-ball based on ®(I). Fur-

thermore, by introducing an auxiliary variable 6, problem (3) can be
rewritten as:

. 2 2
%1% (17 = 0||55.t.9(0) < sand||OI — E||; <&, 4)

which is equivalent to

min || ~ 012+AD(0)s.t.]0I — E|I3 < e, 5)

where 1 is the regularization parameter. In fact, this problem can be
solved by alternately updating I and 0, which means that one parameter
can be fixed while the other is being updated. Thus, the optimization
can be represented by the following two separated iteration equations:

2
104D = arg min { “W - IHz }s.t.||01 -E|; <e ()
I

0%+ = arg min { lo- I(kH)Hi + /1<1>(0>}, ©)

where k denotes the kth iteration. For convenience, we define
f (@ = [|0l ~ El|5.

On one hand, Equation (6) is a projection problem that can be solved
by an epigraph set method [21]. Here, I and E are reshaped to vectors in
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Fig. 3. Numerical simulation of a moving S-L phantom. (a) The
original S-L phantom moving to right and the reconstructed S-L
phantom from the TV-BM3D, AL and TwIST algorithms, respec-
tively. (b) PSNR (dB) and (c) SSIM results of images reconstructed
by the TV-BM3D (red circles), AL (black squares) and TwIST (blue
triangles) algorithms, respectively.

AL
TwIST
(b) 22 - TVBMiD (c) 1.0 —® TV-BM3D
I?Lm 1:LIST
21 ‘\'_'\,,4/“"‘:* 0.9 .
- 9le—eo—o00o—0o 0o
m
14
Z19 $0.7,
[72] M
e 18 W 0.6 A—A—'—k‘—"\ﬁ/A\A
17 0.5

1234567 8
Frame # Frame #

operation. This method can handle Equation (6) by solving the following
projection equation:

1%+D = argmin { ”Q(k) _LHE} e RN+, ®)

1eG

where the underlined characters denote N+1 dimensional vectors,
9 = [gUOT 01T € RN*1, G is the epigraph set of f(I) and defined as
G={[IT q1T € RN*1: q > f(I)} with q being a positive constant. It can
be seen that the (N+1)th component q of vectors in the epigraph set
G is no less than f(I). To optimize Equation (8), we select the nearest
vector I**+D on the epigraph set G to 6, which requires performing
successive orthogonal projections onto supporting hyperplanes of the
set G. Here, a gradient descent method in Ref. [22] is used to calculate
the projection point [va f(vj)]T after the jth projection, and v; can be
expressed as:

Uj =y - [f(v,,l)/<Hf(v,,1)“z + 1>]Vf(vj—1)~

Here, the initial value of v, is set equal to 6%, Vf(v;.1) denotes the
derivative of the function f at the point v;; and can be expressed as
Vf(vj,l) =20T(Ovj,1 — E). After j,,,, times of successive projections in
total, the final orthogonal projection onto the supporting hyperplane
of the epigraph set, i.e., the optimized I **1) of Equation (8), can be
written as [Vingy! f(Vjmex)17. Therefore, we can obtain I+1) = Vimay after
a reshaping from vector to matrix in Equation (7).

On the other hand, Equation (7) can be seen as a denoising problem
with I&+1 being a noisy image and §+1) the denoised image. Any effec-
tive image denoising algorithm can be used to solve Equation (7), thus
this step is plug and play. Moreover, one can utilize multiple denois-
ers in parallel or alternately on solving Equation (7) to further improve
the image reconstruction quality. Here, we use TV denoiser [23] and
BM3D denoiser [24] alternately, i.e., TV denoiser in the first iteration
and BM3D denoiser in the successive one. Theoretically, different de-
noisers demand different priors. When TV denoiser is selected, the gra-
dient sparsity is exploited as the prior information, while the use of
BM3D denoiser requires the non-local similarity and the sparsity under
a 3D sparsifying transform being exploited as the prior information for
image reconstruction. Therefore, the use of multiple denoisers means

()]

12345678

that richer priors are utilized. In each iteration, we adaptively update
the noise standard deviation ¢ by following the rule proposed in Ref.
[25]:

computing A1) = — (1144 — [V + 06+ — V),

and if A®*tD > yA® | then ¢*+D = g6®),
if AGTD < yA® | then o*+D) = 60,

where n € [0,1), with & < 1.

So far, both the I sub-problem and the 6 sub-problem are solved.
When k = k., the alternate update between I and 6 is completed and
the final output I is arranged as a 3D data cube for display. For clari-
fication, a flow chart of the proposed TV-BM3D algorithm is shown in
Fig. 2.

3. Results and discussions

To validate the reconstruction performance of the TV-BM3D algo-
rithm, we create two different types of dynamic scenes for simulation
in the CUP modality. Each frame of the dynamic scene is encoded by a
standard pseudo-random binary mask with entries {0, 1}, and the pixel
size of the mask is the same as that of the CCD camera. Then these en-
coded images from the dynamic scene are shifted sequentially with each
frame moved down by one pixel relative to the previous one. Finally,
all frames are integrated along the time axis to obtain the final 2D ob-
servation image.

The first dynamic scene is a S-L phantom moving to the right, which
contains 8 images of size 150 x 150, as shown in the ground truth in
Fig. 3(a). The intensity of the target object remains unchanged during
the movement. The TV-BM3D, AL and TwIST algorithms have been re-
spectively used to reconstruct the dynamic scene, and corresponding re-
sults are shown in Fig. 3(a). Obviously, the results reconstructed by the
TV-BM3D algorithm are the best, while those from the AL and TwIST
algorithms gradually become poor in image quality. This can also be
better seen from the areas of the images pointed by the white arrows.
Remarkable contrast of the compared areas can be seen for images re-
constructed by the TV-BM3D algorithm. This contrast gets weak for im-
ages from the AL algorithm and disappears almost for results from the
TwIST algorithm. In addition, both the TWIST and AL algorithms bring
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Fig. 4. Numerical simulation of a rotating fan. (a) The

SN
N
@

ground truth images of a rotating fan, (b) the sheared, in-
tegrated 2D observation images with various noise levels,
and (c) the reconstruction results from the TV-BM3D, AL
and TwiIST algorithms for cases of various noise levels; av-
eraged (d) PSNR (dB) and (e) SSIM results of images recon-
structed by the TV-BM3D (red circles), AL (black squares)
and TwlIST (blue triangles) algorithms.
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some undesirable noise points to the images during reconstruction. To
further show their differences, we calculate the peak signal to noise ra-
tio (PSNR) and structural similarity (SSIM) values of each image recov-
ered from the three algorithms, and corresponding results are shown
in Fig. 3(b) and (c), respectively. As expected, the results from the TV-
BM3D algorithm is far superior to those from both the AL and TwIST
algorithms.

Another dynamic scene used for our simulations is a rotating fan with
three blades with different shapes. The dynamic scene also consists of 8
images, and the size of each frame is 256 x 256, as shown in Fig. 4(a).
Here, the fan is fixed at its central axis, around which the blades rotate
in a random way. We intentionally add Gaussian white noise of different
levels to the integrated 2D observation images to test the reconstruction
robustness of the TV-BM3D, AL and TwIST algorithms. Fig. 4(b) shows
the observation images of various noise levels, as indicated by the signal-
to-noise ratio (SNR). The dynamic scenes are reconstructed from the
observation images using the above three algorithms with the SNR=25,
20, 15 and 10 dB, respectively. Fig. 4(c) shows the odd frames of the

reconstructed images. A specific region of the 7th frame is zoomly shown
in the inset. In order to quantitatively assess the quality of reconstructed
images, the averaged PSNR and SSIM results of all the images at different
noise levels are evaluated, and the results are shown in Fig. 4(d) and (e),
respectively. As one can see, the TV-BM3D algorithm outperforms both
the AL and the TwIST algorithms in terms of quality parameters for
image reconstruction, especially for cases of low SNR. One thing worth
pointing is the less descending slopes on the SNR dependence of both
PSNR and SSIM values from the TV-BM3D algorithm compared with
those from the AL algorithm. This clearly indicates the robust anti-noise
performance of the TV-BM3D algorithm for image reconstruction.

As shown above, we have proven from numerical simulations that
the TV-BM3D algorithm brings higher image quality and possesses
stronger noise immunity in the image reconstruction for CUP than the
conventional AL and TwIST algorithms. Next, we further compare the
performances of the three image reconstruction algorithms with exper-
imentally captured image information of an ultrashort dynamic scene.
We measure the spatiotemporal intensity evolution of a spatially mod-
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Fig. 5. (a) Experimental setup for the spatiotempo-
ral measurement of E-shaped laser pulse, BE: beam
expander, inset: a temporally unsheared CCD image
of the encoding mask; (b) the sheared, integrated 2D
observation image captured by internal CCD; (c) re-
constructed images by TV-BM3D, AL and TwIST algo-
rithms; (d) integrated intensities along horizontal di-
rection for the reconstructed images of the TV-BM3D
(red line), AL (black line) and TwIST (blue line) algo-
rithms at the time delay of 280 ps; (e) extracted tempo-
ral intensity evolutions from the reconstruction results
of the TV-BM3D (red circles), AL (black squares) and
TwiIST (blue triangles) algorithms, together with the
measured result by 1D streak camera (green line).
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ulated picosecond laser pulse in experiment. Fig. 5(a) shows the experi-
mental arrangement. A single laser pulse of ~200 ps temporal width and
~800 nm central wavelength is ejected from a mode-locked Ti:Sapphire
laser amplifier. The output laser pulse is spatially expanded to illumi-
nate a hollow letter E fabricated in a black nylon plate. The photons
within the shape of E can pass through the nylon plate, while those
outside are blocked. The resulted E-shaped laser pulse is projected onto
a thin piece of white paper, and then imaged via a camera lens onto
a transmissive encoding mask with a pseudo-random binary array of
pixel size 80 ym x 80 um. Finally, the encoded dynamic scene is sent to
a wide-open streak camera (Hamamatsu, C7700) for temporal shearing
and spatiotemporal integration by a 4f imaging configuration. Fig. 5(b)
shows the sheared, integrated 2D image finally obtained. The image of
the encoding mask obtained by CUP in static mode is shown in the in-
set of Fig. 5(a) as well. It is worth noting that the intensity distribution
of the mask obtained by the imaging system is not binary due to the
presence of noise. What’s worse, the random codes loaded on the dy-
namic scene further result in aberrations and distortions, which raise
challenges for experimentally reconstructing images with high quality.

Based on the captured 2D image and encoding mask, we use the
aforementioned three algorithms to reconstruct the spatiotemporal evo-
lution of the E-shaped laser pulse, and corresponding results are shown
in Fig. 5(c). Here, a total of 24 frames of images were reconstructed, but
only 12 frames are represented for display. As one can see, the TV-BM3D
algorithm clearly restores the E-shaped spatial structure, and the entire
spatiotemporal evolution of the E-shaped laser spot from appearance to
disappearance is well observed. However, the reconstructed results from
the AL and TwIST algorithms fail to fully display the spatial profile of
the E-shaped laser pulse even at the time delay of 280 ps with the high-
est light intensity. We integrate the signal intensity of the E-shaped laser

200 300 400

Time delay (ps)

profile at the time delay point of 280 ps along the horizontal direction
(shown by the white arrow in Fig. 5(c)) from three algorithms, respec-
tively. And the corresponding normalized results are given in Fig. 5(d).
Compared to the AL and TwIST algorithms, the TV-BM3D algorithm of-
fers a much higher signal-to-noise ratio for the reconstructed images,
particularly for the areas corresponding to the middle and bottom hor-
izontal strokes of the E character, as can be seen from Fig. 5(d). In-
formation of the temporal evolution of the laser pulse intensity is also
extracted for further comparison and shown in Fig. 5(e). The green line
for reference indicates the time evolution of the pulse intensity mea-
sured by the one-dimensional (1D) streak camera with its entrance slit
being narrowed to a few micrometers for spatial sampling [26]. Fig. 5(e)
shows that all the data extracted from reconstructed images are highly
consistent with the reference line, manifesting these algorithms’ capa-
bilities for image reconstruction in CUP. However, the experimental re-
sults presented here indicate that the TV-BM3D algorithm is capable of
reconstructing better images of dynamic scenes in CUP operation than
both the AL and TwIST algorithms.

4. Conclusions

In summary, we have developed a TV-BM3D algorithm for CUP to
reconstruct the images of ultrafast dynamic scenes. Two numerical sim-
ulations and one experiment were conducted to check the reconstruction
capacity of the TV-BM3D algorithm. Compared with the widely used AL
and TwIST algorithms in CUP, the algorithm newly proposed here can
provide higher image reconstruction quality and possess stronger noise
immunity. Moreover, the framework of the TV-BM3D algorithm is plug-
and-play, and any effective denoiser can be incorporated into this frame-
work, which means that various kinds of image prior information can
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be exploited during reconstruction. Therefore, the framework is flexible
and versatile. Notably, many deep learning-based strategies have been
developed in recent years [27-29], which can either be plugged into the
existed algorithms or directly used for the image reconstruction in CUP.
Compared with traditional algorithms, deep learning-based image re-
construction methods driven by a large amount of data can learn richer
image priors and the inherent characteristics of the image structure. It
is prospected that these improvements are very beneficial for extending
the applications of CUP in capturing complex physical and biological
dynamics.

Declaration of Competing Interest
We declare that we have no conflict of interest.
Acknowledgments

This work was partially supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 91850202, 11774094, 12074121,
11804097, 11727810 and 12034008), the Science and Technology
Commission of Shanghai Municipality (Grant Nos. 19560710300 and
20ZR1417100).

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.optlaseng.2020.106475.

References

[1] Liang J, Wang L. Single-shot ultrafast optical imaging. Optica 2018;5:1113-27.

[2] Tiwari V, Sutton M, McNeill S. Assessment of high speed imaging systems for 2D
and 3D deformation measurements: methodology development and validation. Exp
Mech 2007;47:561-79.

[3] Kodama R, Okada K, Kato Y. Development of a two-dimensional space-resolved high
speed sampling camera. Rev Sci Instrum 1999;70:625-8.

[4] Dresselhaus-Cooper L, Gorfain J, Key C, Ofori-Okai B, Ali S, Martynowych D,
et al. Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves in a Multi-Lay-
ered Assembly. Sci Rep 2019;9:3689.

[5] Scott R, Perez F, Santos J, Ridgers C, Davies J, Lancaster K, et al. A study of fast
electron energy transport in relativistically intense laser-plasma interactions with
large density scalelengths. Phys Plasmas 2012;19:053104.

[6] FuchsJ, Nakatsutsumi M, Marques J, Antici P, Bourgeois N, Grech M, et al. Space and
time-resolved observation of single filaments propagation in an underdense plasma
and of beam coupling between neighbouring filaments. Plasma Phys Controlled Fu-
sion 2007;49:B497-504.

[7]

[8

—

[9

—

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

Optics and Lasers in Engineering 139 (2021) 106475

Gao L, Liang J, Li C, Wang L. Single-shot compressed ultrafast photography at one
hundred billion frames per second. Nature 2014;516:74-7.

Liang J, Zhu L, Wang L. Single-shot real-time femtosecond imaging of temporal fo-
cusing. Light Sci Appl 2018;7:466-75.

Qi D, Zhang S, Yang C, He Y, Cao F, Yao J, et al. Single-shot compressed ultrafast
photography: a review. Adv Photonics 2020;2:014003.

Mochizuki F, Kagawa K, Okihara S, Seo M, Zhang B, Takasawa T, et al. Single-event
transient imaging with an ultra-high-speed temporally compressive multi-aperture
CMOS image sensor. Opt Express 2016;24:4155-76.

Liang J, Ma C, Zhu L, Chen Y, Gao L, Wang L. Single-shot real-time video recording of
a photonic Mach cone induced by a scattered light pulse. Sci Adv 2017;3:e1601814.
Cao F, Yang C, Qi D, Yao J, He Y, Wang X, et al. Single-shot spatiotemporal intensity
measurement of picosecond laser pulses with compressed ultrafast photography. Opt
Lasers Eng 2019;116:89-93.

Yang C, CaoF, Qi D, He Y, Ding P, Yao J, et al. Hyperspectrally Compressed Ultrafast
Photography. Phys Rev Lett 2020;124:023902.

Kim T, Liang J, Zhu L, Wang L. Picosecond-resolution phase-sensitive imaging of
transparent objects in a single shot. Sci Adv 2020;6 eaay6200.

Zhu L, Chen Y, Liang J, Xu Q, Gao L, Ma C, et al. Space- and intensity-constrained
reconstruction for compressed ultrafast photography. Optica 2016;3:694-7.

Yang C, Qi D, Wang X, Cao F, He Y, Wen W, et al. Optimizing codes for compressed
ultrafast photography by genetic algorithm. Optica 2018;5:147-51.

Yang C, Qi D, Cao F, He Y, Wang X, Wen W, et al. Improving the image recon-
struction quality of compressed ultrafast photography via an augmented Lagrangian
algorithm. J Opt 2019;21:035703.

Liao X, Li H, Carin L. Generalized alternating projection for weighted-;, ; mini-
mization with applications to model-based compressive sensing. SIAM J Imag Sci
2014;7:797-823.

Bioucas-Dias J, Figueiredo M. A new TwlIST: two step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Trans Image Process
2007;16:2992-3004.

Berg E, Friedlander M. Probing the Pareto frontier for basis pursuit solutions. SIAM
J Sci Comput 2008;31:890-912.

Tofighi M, Kose K, Cetin A. Denoising using projections onto the epigraph set of
convex cost functions. IEEE Int Conf Image Process 2015:2709-13.

Shi B, Lian Q, Huang X, An N. Constrained phase retrieval: when alternating projec-
tion meets regularization. J Opt Soc Amer B 2018;35:1271-81.

Yuan X. Generalized alternating projection based total variation minimization for
compressive sensing. IEEE Int Conf Image Process 2016:2539-43.

Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3d transfor-
m-domain collaborative filtering. IEEE Trans Image Process 2007;16:2080-95.
Yuan X, Yang L, Suo J, Dai Q. Plug-and-Play Algorithms for Large-scale Snapshot
Compressive Imaging. ArXiv 2020;2003:13654.

Guide to streak cameras, https://www.hamamatsu.com/resources/
pdf/sys/SHSSO006E_STREAK.pdf [accessed 12-August-2020].

Zhang K, Zuo W, Zhang L. FFDNet: toward a fast and flexible solution for CNN based
image denoising. IEEE Trans Image Process 2017;27:4608-22.

Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for image restora-
tion. CVPR 2017:2808-17.

Ma Y, Feng X, Gao L. Deep-learning-based image reconstruction for compressed ul-
trafast photography. Opt Lett 2020;45:4400-3.


https://doi.org/10.1016/j.optlaseng.2020.106475
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0001
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0001
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0001
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0002
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0002
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0002
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0002
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0003
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0003
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0003
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0003
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0004
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0005
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0006
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0007
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0007
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0007
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0007
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0007
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0008
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0008
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0008
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0008
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0009
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0010
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0011
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0011
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0011
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0011
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0011
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0011
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0011
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0012
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0013
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0014
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0014
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0014
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0014
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0014
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0015
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0016
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0017
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0018
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0018
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0018
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0018
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0019
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0019
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0019
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0020
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0020
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0020
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0021
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0021
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0021
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0021
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0022
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0022
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0022
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0022
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0022
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0023
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0023
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0024
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0024
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0024
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0024
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0024
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0025
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0025
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0025
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0025
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0025
https://www.hamamatsu.com/resources/pdf/sys/SHS
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0027
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0027
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0027
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0027
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0028
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0028
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0028
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0028
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0028
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0029
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0029
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0029
http://refhub.elsevier.com/S0143-8166(20)31913-8/sbref0029

	Total variation and block-matching 3D filtering-based image reconstruction for single-shot compressed ultrafast photography
	1 Introduction
	2 Methods
	3 Results and discussions
	4 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References


