
Optics and Lasers in Engineering 139 (2021) 106475 

Contents lists available at ScienceDirect 

Optics and Lasers in Engineering 

journal homepage: www.elsevier.com/locate/optlaseng 

Total variation and block-matching 3D filtering-based image reconstruction 

for single-shot compressed ultrafast photography 

Jiali Yao 

1 , Dalong Qi 1 , ∗ , Yunhua Yao 

1 , Fengyan Cao 

1 , Yilin He 

1 , Pengpeng Ding 

1 , 
Chengzhi Jin 

1 , Tianqing Jia 

1 , ∗ , Jinyang Liang 

2 , Lianzhong Deng 

1 , Zhenrong Sun 

1 , 
Shian Zhang 

1 , 3 , 4 , ∗ 

1 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200062, China 
2 Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, 
J3 × 1S2, Canada 
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China 
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan, 250358, China 

a r t i c l e i n f o 

Keywords: 
Optical imaging 

Computational imaging 

Compressed sensing 

Image denoising 

a b s t r a c t 

Compressed ultrafast photography (CUP), as the fastest receive-only ultrafast imaging technology by combining 

steak imaging and compressed sensing (CS), has shown to be a powerful tool to measure ultrafast dynamic scenes. 

Through a reconstruction algorithm based on CS, CUP can capture the three-dimensional image information of 

non-repetitive transient events with a single exposure. However, it still suffers from poor image reconstruction 

quality on account of the super-high data compression ratio induced by the undersampling strategy. Here, we 

propose a total variation (TV) combined with block matching and 3D filtering (BM3D) reconstruction algorithm 

to improve the image quality of CUP, which is named as the TV-BM3D algorithm. The proposed algorithm can 

simultaneously exploit gradient sparsity and non-local similarity for image reconstruction by incorporating TV 

and BM3D denoisers. Both the numerical simulations and experimental results show that, compared with the two 

conventional two-step iterative shrinkage/thresholding and augmented Lagrangian algorithms in CUP, the TV- 

BM3D algorithm can not only improve the image reconstruction quality, but also strengthen the noise immunity 

of this technique. It is prospected that these improvements in image reconstruction will further promote the 

practical applications of CUP in capturing complex physical and biological dynamics. 
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. Introduction 

Single-shot ultrafast optical imaging is an important branch in the ul-
rafast optical imaging field. This technology can capture non-repeatable
r difficult-to-repeat ultrafast dynamic events in real time, which of-
ers an imaging speed over three orders of magnitude higher than
hat of charge-coupled device (CCD) or complementary metal-oxide-
emiconductor (CMOS) detectors. Therefore, it has significant applica-
ions in not only scientific but also industrial and military fields [1] .
ingle-shot ultrafast optical imaging based on passive detection, which
equires no specific active illumination, is widely used to record pho-
oluminescent, chemiluminescent and color-selective transient scenes.
ccording to ways of obtaining the images of recorded objects, there
re two general techniques: direct imaging and reconstruction imag-
ng. The direct imaging techniques, such as ultrafast framing cameras
2] and high-speed sampling cameras [3] , have succeeded in captur-
ng shockwave dynamics [4] , electron energy transport [5] and plasma
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ynamics [6] . However, they still suffer from either a poor sequence
epth, i.e., the number of images per shot, or very few pixel counts per
mage. To overcome these limitations, compressive sensing-based recon-
truction approaches including compressed ultrafast photography (CUP)
7-9] and multi-aperture compressed sensing CMOS [10] have been pro-
osed to vastly compress the data throughput by taking advantage of the
parsity of dynamic scenes. 

By combining compressed sensing algorithms with the streak cam-
ra, CUP develops as a single-shot and receive-only imaging approach
equiring no active illumination and capable of capturing ultrafast time-
volution events at speeds up to 10 13 frames per second with a se-
uence depth of several hundred frames. Since its proposal, CUP has
ttracted great attention from scientists. To date, this technology has
een successfully applied in capturing flying photons [7 , 11] , measuring
he spatiotemporal intensity of ultrashort laser fields [8 , 12] , recording
our-dimensional information simultaneously [13] , and phase-sensitive
maging [14] . 
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Fig. 1. Schematic diagram of data acquisition for CUP, where, t : time; x, y : spa- 

tial coordinates of the dynamical scene; x ′ , y ′ : spatial coordinates at the streak 

camera; C: spatial encoding operator; S: temporal shearing operator; and T: spa- 

tiotemporal integration operator. 
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Fig. 2. Flow chart of the TV-BM3D algorithm. 
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In CUP’s operation, the three-dimensional (3D) x - y - t information of a
ynamic scene is first captured by a streak camera after random encod-
ng, and then the CS algorithm is used to recover the original dynamic
cene. During the image acquisition, the target scene has a rather high
ortion of its information lost due to pseudo-random binary encoding,
hich makes the CUP a kind of lossy imaging. In addition, the target in-

ormation is inevitably polluted by noise during the image acquisition.
herefore, the finally reconstructed images are often of poor quality and

ow accuracy. In order to make up for these defects, various improving
ethods have been proposed in recent years, such as the spatial and

trength constraint reconstruction algorithm [15] , the optimization of
he encoding pattern method [16] , and the augmented Lagrangian (AL)
lgorithm [17] . However, all these algorithms exploit total variation
TV) as the regularization function, which means that gradient sparsity
s utilized as the main prior information for image reconstruction. Here,
e report a symphysic algorithm jointly based on TV and block match-

ng and 3D filtering (BM3D), named as the TV-BM3D algorithm. In this
lgorithm, the generalized alternating projection (GAP) framework is
dopted [18] , and TV and BM3D denoisers are employed to solve the
mage denoising sub-problem. Compared with the algorithms based on
V regularization, The TV-BM3D algorithm simultaneously exploits the
parsity in the gradient domain and non-local similarity of images to
nsure a higher reconstruction quality. In this paper, the TV-BM3D al-
orithm is also compared to the two conventional algorithms based on
V regularization, i.e. AL algorithm [17] and two-step iterative shrink-
ge/thresholding (TwIST) algorithm [19] , in image reconstruction. We
umerically simulate a moving Shepp–Logan (S–L) phantom in space
nd a rotating fan polluted by various noise levels, and experimentally
easure a spatially modulated picosecond laser pulse. Both the sim-
lation and experimental results demonstrate the effectiveness of our
roposed algorithm. 

. Methods 

In a CUP system, the target dynamic scene is first randomly encoded
n space and then sheared sequentially by a streak camera according
o its time of arrival at the detector. Finally, a CCD camera spatiotem-
orally integrates all the temporally sheared images under a single shot
xposure. As shown in Fig. 1 , a 3D x - y - t data cube representing the target
ynamic scene is transformed into a two-dimensional (2D) x ′ - y ′ image to
e captured by the CCD. Considering the noise introduced by the mea-
urement device, the image acquisition process can be modeled as [7] :

( 𝑥 ′, 𝑦 ′) = TSC 𝐼( 𝑥, 𝑦, 𝑡 ) + 𝑛 = O 𝐼 ( 𝑥, 𝑦, 𝑡 ) + 𝑛, (1)

here I ( x, y, t ) is target dynamic scene with N elements, E ( x ′ , y ′ ) is a
oisy observation with M elements captured by CCD. C, S and T are
patial encoding, temporal shearing and spatiotemporal integration op-
rators, respectively. The analytical expressions of operators C, S, T can
e found in Ref. [9] . O is a combined linear operator, and n represents
oise. 

In order to obtain the target dynamic scene, I ( x, y, t ) needs to be
ecovered from E ( x ′ , y ′ ), which requires solving Equation (1) in reverse.
ypically, M is much smaller than N , thus the inverse problem is ill-
osed, and priors about I ( x, y, t ) are often needed. One way is to solve
 constrained optimization problem [20] , which can be expressed as: 

in 
𝐼 

Φ( 𝐼)s . t . ‖O 𝐼 − 𝐸 ‖2 2 ≤ 𝜀, (2)

here Φ( I ) is the regularizer representing the prior information, ||.|| 2 is
he l 2 norm, and 𝜀 is a positive parameter dependent on noise level. 

We extend the GAP method of Ref. [18] to the above optimization
roblem with an inequality constraint, and the problem (2) can be ex-
ressed equivalently as: 

in 
𝐼,𝛿

s . t . Φ( 𝐼) ≤ 𝛿and ‖O 𝐼 − 𝐸 ‖2 2 ≤ 𝜀, (3)

here 𝛿 is the radius of the generalized l 1,2 -ball based on Φ( I ). Fur-
hermore, by introducing an auxiliary variable 𝜃, problem (3) can be
ewritten as: 

in 
,𝜃,𝛿

‖𝐼 − 𝜃‖2 2 s . t . Φ( 𝜃) ≤ 𝛿and ‖O 𝐼 − 𝐸 ‖2 2 ≤ 𝜀, (4)

hich is equivalent to 

in 
𝐼,𝜃

‖𝐼 − 𝜃‖2 2 + 𝜆Φ( 𝜃)s . t . ‖O 𝐼 − 𝐸 ‖2 2 ≤ 𝜀, (5)

here 𝜆 is the regularization parameter. In fact, this problem can be
olved by alternately updating I and 𝜃, which means that one parameter
an be fixed while the other is being updated. Thus, the optimization
an be represented by the following two separated iteration equations: 

 

( 𝑘 +1 ) = arg min 
𝐼 

{ ‖‖‖𝜃( 𝑘 ) − 𝐼 
‖‖‖2 2 
} 

s . t . ‖O 𝐼 − 𝐸 ‖2 2 ≤ 𝜀, (6)

( 𝑘 +1 ) = arg min 
𝜃

{ ‖‖‖𝜃 − 𝐼 ( 𝑘 +1 ) 
‖‖‖2 2 + 𝜆Φ( 𝜃) 

} 

, (7)

here k denotes the k th iteration. For convenience, we define
 (I) = ||OI − E ||2 2 . 

On one hand, Equation (6) is a projection problem that can be solved
y an epigraph set method [21] . Here, I and E are reshaped to vectors in



J. Yao, D. Qi, Y. Yao et al. Optics and Lasers in Engineering 139 (2021) 106475 

Fig. 3. Numerical simulation of a moving S-L phantom. (a) The 

original S-L phantom moving to right and the reconstructed S-L 

phantom from the TV-BM3D, AL and TwIST algorithms, respec- 

tively. (b) PSNR (dB) and (c) SSIM results of images reconstructed 

by the TV-BM3D (red circles), AL (black squares) and TwIST (blue 

triangles) algorithms, respectively. 
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peration. This method can handle Equation (6) by solving the following
rojection equation: 

 

( 𝑘 +1 ) = arg min 
𝐼 ∈𝐺 

{ ‖‖‖𝜃( 𝑘 ) − 𝐼 
‖‖‖2 2 
} 

∈ ℝ 

𝑁 +1 , (8)

here the underlined characters denote N + 1 dimensional vectors,
( k ) = [ 𝜃( k ) T 0] T ∈ R 

N + 1 , G is the epigraph set of f ( I ) and defined as
 = {[ I T q ] T ∈ R 

N + 1 : q ≥ f ( I )} with q being a positive constant. It can
e seen that the ( N + 1)th component q of vectors in the epigraph set
 is no less than f ( I ). To optimize Equation (8) , we select the nearest
ector I ( k + 1) on the epigraph set G to 𝜃( k ) , which requires performing
uccessive orthogonal projections onto supporting hyperplanes of the
et G . Here, a gradient descent method in Ref. [22] is used to calculate
he projection point [ v j 

T f ( v j )] 
T after the j th projection, and v j can be

xpressed as: 

 𝑗 = 𝑣 𝑗−1 − 

[ 
𝑓 
(
𝑣 𝑗−1 

)
∕ 
( ‖‖‖𝑓 (𝑣 𝑗−1 )‖‖‖2 2 + 1 

) ] 
∇ 𝑓 

(
𝑣 𝑗−1 

)
. (9)

Here, the initial value of v 0 is set equal to 𝜃( k ) , ∇ f ( v j -1 ) denotes the
erivative of the function f at the point v j - 1 and can be expressed as
 f ( v j − 1 ) = 2O 

T (O v j − 1 − E ). After j max times of successive projections in
otal, the final orthogonal projection onto the supporting hyperplane
f the epigraph set, i.e., the optimized I ( k + 1) of Equation (8) , can be
ritten as [ v jmax 

T f ( v jmax )] 
T . Therefore, we can obtain I ( k + 1) = v jmax after

 reshaping from vector to matrix in Equation (7) . 
On the other hand, Equation (7) can be seen as a denoising problem

ith I ( k + 1) being a noisy image and 𝜃( k + 1) the denoised image. Any effec-
ive image denoising algorithm can be used to solve Equation (7) , thus
his step is plug and play. Moreover, one can utilize multiple denois-
rs in parallel or alternately on solving Equation (7) to further improve
he image reconstruction quality. Here, we use TV denoiser [23] and
M3D denoiser [24] alternately, i.e., TV denoiser in the first iteration
nd BM3D denoiser in the successive one. Theoretically, different de-
oisers demand different priors. When TV denoiser is selected, the gra-
ient sparsity is exploited as the prior information, while the use of
M3D denoiser requires the non-local similarity and the sparsity under
 3D sparsifying transform being exploited as the prior information for
mage reconstruction. Therefore, the use of multiple denoisers means
hat richer priors are utilized. In each iteration, we adaptively update
he noise standard deviation 𝜎 by following the rule proposed in Ref.
25] : 

computing Δ( 𝑘 +1 ) = 

1 √
𝑁 

( ‖𝐼 ( 𝑘 +1 ) − 𝐼 ( 𝑘 ) ‖2 + ‖𝜃( 𝑘 +1 ) − 𝜃( 𝑘 ) ‖2 ) , 
and if Δ( 𝑘 +1 ) ≥ 𝜂Δ( 𝑘 ) , then 𝜎( 𝑘 +1 ) = 𝜉𝜎( 𝑘 ) , 
if Δ( 𝑘 +1 ) < 𝜂Δ( 𝑘 ) , then 𝜎( 𝑘 +1 ) = 𝜎( 𝑘 ) , 

here 𝜂 ∈ [0,1), with 𝜉 < 1. 
So far, both the I sub-problem and the 𝜃 sub-problem are solved.

hen k = k max , the alternate update between I and 𝜃 is completed and
he final output I is arranged as a 3D data cube for display. For clari-
cation, a flow chart of the proposed TV-BM3D algorithm is shown in
ig. 2 . 

. Results and discussions 

To validate the reconstruction performance of the TV-BM3D algo-
ithm, we create two different types of dynamic scenes for simulation
n the CUP modality. Each frame of the dynamic scene is encoded by a
tandard pseudo-random binary mask with entries {0, 1}, and the pixel
ize of the mask is the same as that of the CCD camera. Then these en-
oded images from the dynamic scene are shifted sequentially with each
rame moved down by one pixel relative to the previous one. Finally,
ll frames are integrated along the time axis to obtain the final 2D ob-
ervation image. 

The first dynamic scene is a S-L phantom moving to the right, which
ontains 8 images of size 150 × 150, as shown in the ground truth in
ig. 3 (a). The intensity of the target object remains unchanged during
he movement. The TV-BM3D, AL and TwIST algorithms have been re-
pectively used to reconstruct the dynamic scene, and corresponding re-
ults are shown in Fig. 3 (a). Obviously, the results reconstructed by the
V-BM3D algorithm are the best, while those from the AL and TwIST
lgorithms gradually become poor in image quality. This can also be
etter seen from the areas of the images pointed by the white arrows.
emarkable contrast of the compared areas can be seen for images re-
onstructed by the TV-BM3D algorithm. This contrast gets weak for im-
ges from the AL algorithm and disappears almost for results from the
wIST algorithm. In addition, both the TwIST and AL algorithms bring
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Fig. 4. Numerical simulation of a rotating fan. (a) The 

ground truth images of a rotating fan, (b) the sheared, in- 

tegrated 2D observation images with various noise levels, 

and (c) the reconstruction results from the TV-BM3D, AL 

and TwIST algorithms for cases of various noise levels; av- 

eraged (d) PSNR (dB) and (e) SSIM results of images recon- 

structed by the TV-BM3D (red circles), AL (black squares) 

and TwIST (blue triangles) algorithms. 
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ome undesirable noise points to the images during reconstruction. To
urther show their differences, we calculate the peak signal to noise ra-
io (PSNR) and structural similarity (SSIM) values of each image recov-
red from the three algorithms, and corresponding results are shown
n Fig. 3 (b) and (c), respectively. As expected, the results from the TV-
M3D algorithm is far superior to those from both the AL and TwIST
lgorithms. 

Another dynamic scene used for our simulations is a rotating fan with
hree blades with different shapes. The dynamic scene also consists of 8
mages, and the size of each frame is 256 × 256, as shown in Fig. 4 (a).
ere, the fan is fixed at its central axis, around which the blades rotate

n a random way. We intentionally add Gaussian white noise of different
evels to the integrated 2D observation images to test the reconstruction
obustness of the TV-BM3D, AL and TwIST algorithms. Fig. 4 (b) shows
he observation images of various noise levels, as indicated by the signal-
o-noise ratio (SNR). The dynamic scenes are reconstructed from the
bservation images using the above three algorithms with the SNR = 25,
0, 15 and 10 dB, respectively. Fig. 4 (c) shows the odd frames of the
econstructed images. A specific region of the 7th frame is zoomly shown
n the inset. In order to quantitatively assess the quality of reconstructed
mages, the averaged PSNR and SSIM results of all the images at different
oise levels are evaluated, and the results are shown in Fig. 4 (d) and (e),
espectively. As one can see, the TV-BM3D algorithm outperforms both
he AL and the TwIST algorithms in terms of quality parameters for
mage reconstruction, especially for cases of low SNR. One thing worth
ointing is the less descending slopes on the SNR dependence of both
SNR and SSIM values from the TV-BM3D algorithm compared with
hose from the AL algorithm. This clearly indicates the robust anti-noise
erformance of the TV-BM3D algorithm for image reconstruction. 

As shown above, we have proven from numerical simulations that
he TV-BM3D algorithm brings higher image quality and possesses
tronger noise immunity in the image reconstruction for CUP than the
onventional AL and TwIST algorithms. Next, we further compare the
erformances of the three image reconstruction algorithms with exper-
mentally captured image information of an ultrashort dynamic scene.

e measure the spatiotemporal intensity evolution of a spatially mod-
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Fig. 5. (a) Experimental setup for the spatiotempo- 

ral measurement of E-shaped laser pulse, BE: beam 

expander, inset: a temporally unsheared CCD image 

of the encoding mask; (b) the sheared, integrated 2D 

observation image captured by internal CCD; (c) re- 

constructed images by TV-BM3D, AL and TwIST algo- 

rithms; (d) integrated intensities along horizontal di- 

rection for the reconstructed images of the TV-BM3D 

(red line), AL (black line) and TwIST (blue line) algo- 

rithms at the time delay of 280 ps; (e) extracted tempo- 

ral intensity evolutions from the reconstruction results 

of the TV-BM3D (red circles), AL (black squares) and 

TwIST (blue triangles) algorithms, together with the 

measured result by 1D streak camera (green line). 
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a  
lated picosecond laser pulse in experiment. Fig. 5 (a) shows the experi-
ental arrangement. A single laser pulse of ~200 ps temporal width and
800 nm central wavelength is ejected from a mode-locked Ti:Sapphire

aser amplifier. The output laser pulse is spatially expanded to illumi-
ate a hollow letter E fabricated in a black nylon plate. The photons
ithin the shape of E can pass through the nylon plate, while those
utside are blocked. The resulted E-shaped laser pulse is projected onto
 thin piece of white paper, and then imaged via a camera lens onto
 transmissive encoding mask with a pseudo-random binary array of
ixel size 80 𝜇m × 80 𝜇m. Finally, the encoded dynamic scene is sent to
 wide-open streak camera (Hamamatsu, C7700) for temporal shearing
nd spatiotemporal integration by a 4f imaging configuration. Fig. 5 (b)
hows the sheared, integrated 2D image finally obtained. The image of
he encoding mask obtained by CUP in static mode is shown in the in-
et of Fig. 5 (a) as well. It is worth noting that the intensity distribution
f the mask obtained by the imaging system is not binary due to the
resence of noise. What’s worse, the random codes loaded on the dy-
amic scene further result in aberrations and distortions, which raise
hallenges for experimentally reconstructing images with high quality. 

Based on the captured 2D image and encoding mask, we use the
forementioned three algorithms to reconstruct the spatiotemporal evo-
ution of the E-shaped laser pulse, and corresponding results are shown
n Fig. 5 (c). Here, a total of 24 frames of images were reconstructed, but
nly 12 frames are represented for display. As one can see, the TV-BM3D
lgorithm clearly restores the E-shaped spatial structure, and the entire
patiotemporal evolution of the E-shaped laser spot from appearance to
isappearance is well observed. However, the reconstructed results from
he AL and TwIST algorithms fail to fully display the spatial profile of
he E-shaped laser pulse even at the time delay of 280 ps with the high-
st light intensity. We integrate the signal intensity of the E-shaped laser
w  
rofile at the time delay point of 280 ps along the horizontal direction
shown by the white arrow in Fig. 5 (c)) from three algorithms, respec-
ively. And the corresponding normalized results are given in Fig. 5 (d).
ompared to the AL and TwIST algorithms, the TV-BM3D algorithm of-

ers a much higher signal-to-noise ratio for the reconstructed images,
articularly for the areas corresponding to the middle and bottom hor-
zontal strokes of the E character, as can be seen from Fig. 5 (d). In-
ormation of the temporal evolution of the laser pulse intensity is also
xtracted for further comparison and shown in Fig. 5 (e). The green line
or reference indicates the time evolution of the pulse intensity mea-
ured by the one-dimensional (1D) streak camera with its entrance slit
eing narrowed to a few micrometers for spatial sampling [26] . Fig. 5 (e)
hows that all the data extracted from reconstructed images are highly
onsistent with the reference line, manifesting these algorithms’ capa-
ilities for image reconstruction in CUP. However, the experimental re-
ults presented here indicate that the TV-BM3D algorithm is capable of
econstructing better images of dynamic scenes in CUP operation than
oth the AL and TwIST algorithms. 

. Conclusions 

In summary, we have developed a TV-BM3D algorithm for CUP to
econstruct the images of ultrafast dynamic scenes. Two numerical sim-
lations and one experiment were conducted to check the reconstruction
apacity of the TV-BM3D algorithm. Compared with the widely used AL
nd TwIST algorithms in CUP, the algorithm newly proposed here can
rovide higher image reconstruction quality and possess stronger noise
mmunity. Moreover, the framework of the TV-BM3D algorithm is plug-
nd-play, and any effective denoiser can be incorporated into this frame-
ork, which means that various kinds of image prior information can
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e exploited during reconstruction. Therefore, the framework is flexible
nd versatile. Notably, many deep learning-based strategies have been
eveloped in recent years [27-29] , which can either be plugged into the
xisted algorithms or directly used for the image reconstruction in CUP.
ompared with traditional algorithms, deep learning-based image re-
onstruction methods driven by a large amount of data can learn richer
mage priors and the inherent characteristics of the image structure. It
s prospected that these improvements are very beneficial for extending
he applications of CUP in capturing complex physical and biological
ynamics. 
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